首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The spin–fermion model has long been used to describe the quantum-critical behavior of 2d electron systems near an antiferromagnetic (AFM) instability. Recently, the standard procedure to integrate out the fermions and obtain an effective action for spin waves has been questioned in the clean case. We show that, in the presence of disorder, the single fermion loops display two crossover scales: upon lowering the energy, the singularities of the clean fermionic loops are first cut off, but below a second scale new singularities arise that lead again to marginal scaling. In addition, impurity lines between different fermion loops generate new relevant couplings which dominate at low energies. We outline a non-linear σ model formulation of the single-loop problem, which allows to control the higher singularities and provides an effective model in terms of low-energy diffusive as well as spin modes.  相似文献   

2.
A boson-fermion hybrid representation is presented. In this framework, a fermion system is described concurrently by the bosonic and the fermionic degrees of freedom. A fermion pair in this representation can be treated as a boson without violating the Pauli principle. Furthermore the “bosonic interactions” are shown to originate from the exchange processes of the fermions and can be calculated from the original fermion interactions. Both the formulation of the BFH representations for the even and odd nuclear systems are given. We find that the basic equation of the nuclear field theory (NFT) is just the usual Schrödinger equation in such a representation with the empirical NFT diagrammatic rules emerging naturally. This theory was numerically checked in the case of four nucleons moving in a single-j shell and the exactness of the theory was established.  相似文献   

3.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum–atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics.  相似文献   

4.
We consider the three-loop corrections to the static potential which are induced by a closed fermion loop. For the reduction of the occurring integrals a combination of the Gröbner and Laporta algorithm has been used and the evaluation of the master integrals has been performed with the help of the Mellin–Barnes technique. The fermionic three-loop corrections amount to 2% of the tree-level result for top quarks, 8% for bottom quarks and 27% for the charm quark system.  相似文献   

5.
Introducing the fermionic R-operator and solutions of the inverse scattering problem for local fermion operators, we derive a multiple integral representation for zero-temperature correlation functions of a one-dimensional interacting spinless fermion model. Correlation functions particularly considered are the one-particle Green's function and the density–density correlation function both for any interaction strength and for arbitrary particle densities. In particular for the free fermion model, our formulae reproduce the known exact results. Form factors of local fermion operators are also calculated for a finite system.  相似文献   

6.
We show that the “two-dimensional” graphene is stable due to transverse short-range displacements of carbon atoms, which may be described in a framework of Ising model with competing interactions. When temperature decreases, two transitions, high temperature disorder into order and order into low-temperature glass, arise. The graphene looks like a microscopic “washboard” with the wavelength of about 2–4 Å. Due to up–down asymmetry of the lattice distortions in graphene on substrate, a mini-bandgap arises. This leads to many new phenomena: a rectification of AC current induced by microwave or infrared radiation, the existence of self-trapping and a new type of fermionic mini-exciton-polaritons.  相似文献   

7.
The Jain's composite fermion wavefunction has proven quite succesful to describe most of the fractional quantum Hall states. Its mathematical foundation lies in the Chern-Simons field theory for the electrons in the lowest Landau level, despite the fact that such wavefunction is different from a typical mean-field level Chern-Simons wavefunction. It is known that the energy excitation gaps for fractional Hall states described by Jain's composite fermion wavefunction cannot be calculated analytically. We note that analytic results for the energy excitation gaps of fractional Hall states described by a fermion Chern-Simons wavefunction are readily obtained by using a technique originating from nuclear matter studies. By adopting this technique to the fractional quantum Hall effect we obtained analytical results for the excitation energy gaps of all fractional Hall states described by a Chern-Simons wavefunction. Received 9 March 2001  相似文献   

8.
9.
In this paper, we consider the groupoidification of the fermion algebra. We construct a groupoid as the categorical analogues of the fermionic Fock space, and the creation and annihilation operators correspond to spans of groupoids. The categorical fermionic Fock states have some extra structures comparing with the normal forms. We also construct a 2-category of spans of groupoids corresponding to the fermion algebra. The relations of the morphisms in this 2-category are consistent with those in the graphical category which is represented by string diagrams. One may use these formalisms to describe the fermion systems more finely, and study some additional properties of the fermion systems.  相似文献   

10.
We have experimentally studied few-body impurity systems consisting of a single fermionic atom and a small bosonic field on the sites of an optical lattice. Quantum phase revival spectroscopy has allowed us to accurately measure the absolute strength of Bose-Fermi interactions as a function of the interspecies scattering length. Furthermore, we observe the modification of Bose-Bose interactions that is induced by the interacting fermion. Because of an interference between Bose-Bose and Bose-Fermi phase dynamics, we can infer the mean fermionic filling of the mixture and quantify its increase (decrease) when the lattice is loaded with attractive (repulsive) interspecies interactions.  相似文献   

11.
Yi Liao   《Physics letters. [Part B]》2008,665(5):356-360
We construct the propagator for a free fermionic unparticle field from basic considerations of scale and Lorentz invariance. The propagator is fixed up to a normalization factor which is required to recover the result of a free massless fermion field in the canonical limit of the scaling dimension. Two new features appear compared to the bosonic case. The propagator contains both γ and non-γ terms, and there is a relative phase of π/2 between the two in the time-like regime for arbitrary scaling dimension. This should result in additional interference effects on top of the one known in the bosonic case. The non-γ term can mediate chirality flipped transitions that are not suppressed by a light fermion mass but are enhanced by a large bosonic mass in loops, compared to the pure particle case. We employ this last feature to set stringent bounds on the Yukawa couplings between a fermionic unparticle and an ordinary fermion through electromagnetic dipole moments and radiative decays of light fermions.  相似文献   

12.
The chiral Gross–Neveu model or equivalently the linearized Bogoliubov–de Gennes equation has been mapped to the nonlinear Schrödinger (NLS) hierarchy in the Ablowitz–Kaup–Newell–Segur formalism by Correa, Dunne and Plyushchay. We derive the general expression for exact fermionic solutions for all gap functions in the arbitrary order of the NLS hierarchy. We also find that the energy spectrum of the n  -th NLS hierarchy generally has n+1n+1 gaps. As an illustration, we present the self-consistent two-complex-kink solution with four real parameters and two fermion bound states. The two kinks can be placed at any position and have phase shifts. When the two kinks are well separated, the fermion bound states are localized around each kink in most parameter region. When two kinks with phase shifts close to each other are placed at distance as short as possible, the both fermion bound states have two peaks at the two kinks, i.e., the delocalization of the bound states occurs.  相似文献   

13.
A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons.  相似文献   

14.
We present a new numerical technique which combines the variational Monte Carlo and the Lanczos methods without suffering from the fermion sign problem. Lanczos iterations allow systematic improvement of trial wavefunctions while Monte Carlo sampling permits treatment of large lattices. As in the usual Lanczos method we find it useful to symmetrize the starting wavefunction in order to accelerate convergence. We apply our method to the 2D AFM Heisenberg model in the fermionic electron representation, which allows us to compare with results from the equivalent bosonic spin representation. Using d-wave RVB states as starting wavefunctions shows that after only one iteration between 70 and 80% of the difference between the variational energy and the ground state energy (as determined by GFMC) is recovered, and a similar improvement is observed in the second iteration. Leaving the spin-singlet sector by introducing antiferromagnetic correlations reduces the symmetry and the relative improvement in energy drops below 50% for one iteration. Our method allows us also to see trends in observables. Relative to the d-wave RVB states we find an enhancement in the spinspin correlations, consistent with the expectation that the true ground state has long-range order.  相似文献   

15.
彭永刚  巩龙 《光子学报》2014,40(9):1392-1396
用费米线性光学方法,提出无相互作用费米量子信道物理模型.用平稳量子高斯态协方差矩阵性质及Majorization不等式理论,推导出在平稳高斯输入态下费米量子信道最小输出熵的表达式.利用在n模费米系统添加一个额外模的方法,得到平稳高斯态和高斯态输出熵的关系|利用此关系式,借助在高斯输入态下费米信道最小输出熵值是可达的猜测,推导出无相互作用费米信道直积态容量的表达式.最后,用最小输出熵的迭代算法验证已推出的费米信道最小输出熵表达式正确性,数值计算结果表明:对于带噪声的无相互作用费米量子信道,已推出最小输出熵与数值计算结果的吻合度可以达到10e-9.  相似文献   

16.
We analyze generalized CP symmetries of two-Higgs doublet models, extending them from the scalar to the fermion sector of the theory. We show that, other than the usual CP transformation, there is only one of those symmetries which does not imply massless charged fermions. That single model which accommodates a fermionic mass spectrum compatible with experimental data possesses a remarkable feature. Through a soft breaking of the symmetry it displays a new type of spontaneous CP violation, which does not occur in the scalar sector responsible for the symmetry breaking mechanism but, rather, in the fermion sector.  相似文献   

17.
Using the dynamical mean-field theory and the Gutzwiller method, we study the Mott transition in Bose–Fermi mixtures confined in a three-dimensional optical lattice and analyze the effect of fermions on the coherence of bosons. We conclude that increasing fermion composition reduces bosonic coherence in the presence of strong Bose–Fermi interactions and under the condition of the integer filling factors for composite fermions, which consist of one fermion and one or more bosonic holes. Various phases of the mixtures have been demonstrated including phase separation of two species, coexisting regions of superfluid bosons and fermionic liquids, and Mott regions in the phase space spanned by the chemical potentials of the bosons and the fermions.  相似文献   

18.
We study the transition to fermion pair superfluidity in a mixture of interacting bosonic and fermionic atoms. The fermion interaction induced by the bosons and the dynamical screening of the condensate phonons due to fermions are included using the nonperturbative Hamiltonian flow equations. We determine the bosonic spectrum near the transition towards phase separation and find that the superfluid transition temperature may be increased substantially due to phonon damping.  相似文献   

19.
We point out some interesting consequences of antisymmetric fermionic mass terms in grand unified theories, which follow from the symmetry properties of the Yukawa-type fermion-Higgs interactions. In SU(5), we show that an antisymmetric mass matrix M(u) in the up-quark sector arises when the Higgs 5 is replaced by 45. IOn SO(10), all the fermion sectors are characterized by such mass matrices if the neutrinos are required not to pick up the ordinary fermionic mass scale. In the recently proposed vertical-horizontal symmetric SU(5) × SU(5) scheme, a fully antisymmetric M(u) is naturally accompanied by exactly five zeroth-order massless neutrinos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号