首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel β-hydroxy-β-bis(trifluoromethyl)-imines (2a-j) and di(β-hydroxy-β-bis(trifluoromethyl))-diimines (3a-f) were prepared in moderate to good yields via a simple two-step approach: first, β-hydroxy-β-bis(trifluoromethyl)-ketones (1a-c) were obtained by a catalyst-free aldol reaction between liquid hexafluoroacetone sesquihydrate and ketones (acetone, acetophenone, and pinacolone, respectively); then, condensation of the latter fluorinated β-ketols 1a-c with primary amines or diamines was achieved in the presence of Lewis (montmorillonite, InBr3, La(OTf)3) or Brönsted (PTSA) acid catalysts. The molecular structures of mono- and di-β-hydroxy-β-bis(trifluoromethyl)-(di)imines 2e,h and 3a,f were determined and found to exhibit strong intramolecular (R)N?H-O hydrogen bonding.  相似文献   

2.
The PtCl2-catalyzed cyclization reaction of ortho-alkynylphenyl acetals 1 in the presence of COD (1,5-cyclooctadiene) produces 3-(α-alkoxyalkyl)benzofurans 2 in good to high yields. For example, the reaction of acetaldehyde ethyl 2-(1-octynyl)phenyl acetal (1a), acetaldehyde ethyl 2-(cyclohexylethynyl)phenyl acetal (1c), and acetaldehyde ethyl 2-(phenylethynyl)phenyl acetal (1f) in the presence of 2 mol % of platinum(II) chloride and 8 mol % of 1,5-cycloocatadiene in toluene at 30 °C gave the corresponding 2,3-disubstituted benzofurans 2a, 2c, and 2f in 91, 94, and 88% yields, respectively. Moreover, the reaction of N-methoxymethyl-2-alkynylanilines 3 was catalyzed by PdBr2, affording the corresponding 2,3-disubstituted indoles 4 in moderate yields. For example, the reaction of N-methoxymethyl-2-(1-pentynyl)-N-tosylaniline (3a) and N-methoxymethyl-2-(phenylethynyl)-N-tosylaniline (3b) in the presence of 10 mol % of PdBr2 in toluene at 80 °C gave 3-methoxymethyl-2-propyl-1-tosylindole (4a) and 3-methoxymethyl-2-phenyl-1-tosylindole (4b) in 33 and 33% yields, respectively.  相似文献   

3.
Three highly fluorinated bipyridine derivatives (4,4′-bis(RfCH2OCH2)-2,2′-bpy) {Rf=HCF2(CF2)7 (1a), n-C8F17 (1b), n-C10F21 (1c)} have been synthesized using 4,4′-bis(BrCH2)-2,2′-bpy and the corresponding fluorinated alkoxides. The fluorine contents of ligands 1a-c are 58.3, 59.8, and 62.3%, respectively. Despite its high fluorine content, the ligand 1a with a -CF2H polar terminal group is more soluble in organic solvents. The ligand 1b is a white solid and is still moderately soluble in CH2Cl2. The ligand 1c has a high fluorophilicity, the partition ratio being 42:1 for the n-C8F18/CH2Cl2 system. The reaction of ligands 1a-c with [PdCl2(CH3CN)2] results in the novel Pd complexes [PdCl2(4,4′-bis-(RfCH2OCH2)-2,2′-bpy)] where Rf=HCF2(CF2)7 (2a), n-C8F17 (2b), n-C10F21 (2c), respectively. The Pd complex 2b is a pale yellow solid, and has been tested unsatisfactorily for FBC. Insoluble in organic solvents, the Pd complex 2c dissolves only in fluorinated solvents, for instance FC77, which is mainly n-C8F18. The novel Pd complex 2c has been tested as a catalyst in Heck reactions under a fluorous biphasic catalysis condition. It was found that the Pd complex 2c, after an easy separation, keeps its catalytic activity (>90% yield), even after seven runs. The TGA studies indicate that the Pd complexes 2a-c are stable up to 330 °C.  相似文献   

4.
A series of fluorinated bipyridine derivatives, (4,4′-bis(RfCH2OCH2)-2,2′-bpy) {Rf = n-C8F17 (1a), n-C9F19 (1b), n-C10F21 (1c), n-C11F23 (1d)} have been successfully synthesized using 4,4′-bis(bromomethylene)-2,2′-bpy and fluorinated alkoxides. Bpy 1a-d have been characterized by multi-nuclei (1H, 19F, and 13C) NMR, GC/MS and FTIR. The Cu complexes 2a-d could be generated in situ by stirring ligands 1a-d with CuBr·Me2S at room temperature, respectively. The 3-component systems 3c-d, CuBr·Me2S/Bpy (1c-d)/2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO), were successfully used to the aerobic oxidation of alcohols under the fluorous biphasic system (FBS). The resulting products from FBS could be easily recovered by two phase separation with high yields up to 8 runs (>90%). In order to avoid using the expensive fluorous solvents, systems 3a-d, CuBr·Me2S/Bpy (1a-d)/TEMPO, were also successfully shown to catalyze the aerobic alcohol oxidation under the thermomorphic condition (in C6H5Cl), and the yields of oxidation of 4-nitrobenzyl alcohol were close to 100% even after 8 runs. In particular, 3a was most effective under the thermomorphic mode in the chemoselectivity of aerobic oxidation of aliphatic primary alcohols to aldehydes without any overoxidized acids.  相似文献   

5.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

6.
Diethyl iododifluoromethylphosphonate (1) reacted with 4-pentenoic acids in the presence of Na2S2O4 in aqueous acetonitrile solution at ambient temperature to afford various γ-butyrolactones containing α,α-difluoromethylenyl bisphosphonate moiety in moderate to good yields.  相似文献   

7.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

8.
Christophe Curti 《Tetrahedron》2009,65(1):200-1923
The microwave-assisted synthesis of 5-(4-nitrophenyl)-2-phenyl-4-(phenylsulfonyl)-2,3-dihydrofuran (5a) was performed via manganese(III) acetate based oxidative cyclization of 1-(4-nitrophenyl)-2-(phenylsulfonyl)ethanone (3a) with vinylbenzene (4a). This new protocol was applied to four sulfone derivatives (3a-d), using vinylbenzene (4a) and diphenylethene (4b), affording a series of 2,3-dihydrofurans (5a-d, 6a-d) in moderate to good yields (26-55%). Similar methodology, applied on allylbenzene (4c), surprisingly, led to dehydronaphthalene derivatives (7a-d) in moderate yields. The unexpected mechanism and the role of allylbenzene (4c) are herein discussed.  相似文献   

9.
The pyrolysis of 1,1-dichloroperfluorotetralin (4) in a stream of argon gives a mixture contained perfluoro-1-methyleneindan (1), perfluoro-3-methylindene (6), 1,1-dichloroperfluoroindan (2) and perfluoroindene (7), while copyrolysis of tetralin 4 with CHClF2 gives a mixture of compounds 1, 6 in the absence of compounds 2 and 7. 1-Chloro-2-(1-chloro-2,2-difluorovinyl)-3,4,5,6-tetrafluorobenzene (12) is formed in the pyrolysis of 1,1-dichloroperfluorobenzocyclobutene (5) in a stream of argon as well as in a stream of CHClF2.  相似文献   

10.
A series of chiral C1- and C2-symmetric ferrocenyl Schiff bases (1a-c), ferrocenyl aminoalcohols (2a), ferrocenylphosphinamides (2b-c), 1,1′-ferrocenyl-diol (3), and 1,1′-ferrocenyl-disulfonamide (4) were prepared and employed as base catalysts or as ligand for titanium(IV) complexes in the asymmetric addition of diethylzinc to aromatic aldehydes. High enantioselectivity up to almost 100% ee was achieved for the alkylation of benzaldehyde and p-methoxybenzaldehyde with 1 or 3. In contrast, however, the β-aminoalcohol (2a) and phosphinamides (2b and c) that are ubiquitous classes of base catalysts for this reaction proved inefficient in our hands, regardless of the types of substrates or reaction conditions. Comparative studies show that there exist various reaction parameters governing not only chemical yields but also optical yields. These include steric and electronic environment of the substrate, the solvent, the reaction temperature, and the nature of the ferrocene moieties.  相似文献   

11.
Palladium-catalyzed hydrostannylation of acetylenic sulfones 1 in benzene at room temperature gives stereoselectively (E)-α-stannylvinyl sulfones 2 in good yields. (E)-α-Stannylvinyl sulfones 2 are new difunctional group reagents which undergo Stille coupling reactions with alkenyl iodides 3 to afford stereoselectively 1,3-dienyl sulfones 4 in high yields.  相似文献   

12.
Using methyl(trifluoromethyl)dioxirane (1b), 3β,6α,17β-triacetoxy-5α-androstane (6) could be selectively transformed into its C-14 hydroxy derivative (7) and into the valuable C-12 ketone steroid (8), in high yields under mild reaction conditions. Similarly, the oxidation of 3α-estrone acetate (4) with 1b was carried out to yield selectively the steroid C-9 hydroxy derivative (5). The high regio- and site-selectivity attained demonstrates that the powerful dioxirane 1b is the reagent of choice to synthesize valuable oxyfunctionalized steroid derivatives.  相似文献   

13.
Three novel multidentate long-chained oligo-α-aminopyridine ligands, nonapyridyloctaamine (1, npoa), decapyridylnonaamine (2, dpna), and undecapyridyldecaamine (3, upda) were synthesized successfully by tandem Pd-catalyzed cross-coupling aminations. The helical structures of protonated ligand npoa {4, [H4·npoa](SO3CF3)4} and the related dinuclear complexes 5-10 were synthesized and characterized by X-ray diffractions.  相似文献   

14.
Mei-Hsiu Shih  Mou-Yung Yeh 《Tetrahedron》2003,59(23):4103-4111
A convenient method for the preparation of sydnonyl-substituted α, β-unsaturated ketones, based on Knoevenagel condensation, is presented. Although well known, this reaction has never been utilized in the condensation involving sydnone derivatives. Thus, 3-aryl-4-formylsydnones (1) are reacted with active methylene compounds such as acetylacetone (2a), ethyl acetoacetate (2b), diethyl malonate (2c), malononitrile (4a), ethyl cyanoacetate (4b) and cyanoacetamide (4c) by modified Knoevenagel condensation to afford multifunctional derivatives. Also, sydnonyl-substituted 1,3-dihydro-indol-2-one derivatives 10 were synthesized successfully by condensing 3-aryl-4-formylsydnones (1) with oxindoles 9.  相似文献   

15.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

16.
Condensation of the O-protected hydroxyferrocene carbaldehyde (Sp)-1 with suitable diamines, followed by liberation of the hydroxyferrocene moiety leads to a new type of ferrocene-based salen ligands (3). While the use of ethylenediamine in the condensation reaction yields the planar-chiral ethylene-bridged ligand [(Sp,Sp)-3a], reaction with the enantiomers of trans-1,2-cyclohexylendiamine gives rise to the corresponding diastereomeric cyclohexylene-bridged systems [(S,S,Sp,Sp)-3b and (R,R,Sp,Sp)-3c], which feature a combination of a planar-chiral ferrocene unit with a centrochiral diamine backbone. Starting with the ferrocene-aldehyde derivative (Rp)-1, the enantiomeric ligand series (3d/e/f) is accessible via the same synthetic route.The (Sp)-series of these newly developed N2O2-type ligands was used for the construction of the corresponding mononuclear bis(isopropoxy)titanium (4a/b/c), methylaluminum (5a/b/c) and chloroaluminum-complexes (6a/b/c), which were isolated in good yields and identified by X-ray diffraction in several cases. The aluminum complexes (5/6) were successfully used in the Lewis-acid catalyzed addition of trimethylsilylcyanide to benzaldehyde, yielding the corresponding cyanohydrins in 45-62% enantiomeric excess.  相似文献   

17.
Elemental tellurium inserts into the Csp3-Br bond of α-bromomesitylmethyl ketone and due to its strong carbophilic character affords the crystalline C-tellurated derivative of 2,4,6-trimethylacetophenone, (MesCOCH2)2TeBr2, 1b in over 80% yield. Electrophilic substitution of the parent ketone with aryltellurium trichlorides, at room temperature, gives nearly quantitative yields of unsymmetrical alkylaryltellurium dichlorides (MesCOCH2)ArTeCl2 (Ar = mesityl, Mes, 2a; 1-naphthyl, Np, 3a; anisyl, Ans, 4a). Fairly stable mesitoylmethyltellurium(II) derivatives, (MesCOCH2)2Te, 1 and (MesCOCH2)ArTe (Ar = Mes, 2; Np, 3 and Ans, 4) obtained as the reduction products of their dihalotellurium(IV) analogues, readily undergo oxidative addition of dihalogens to afford the corresponding (MesCOCH2)2TeX2 (X = Cl, 1a; Br 1b; I, 1c) and (MesCOCH2)ArTeX2 (X = Cl, Br, I, Ar = Mes, 2a, 2b, 2c; Np, 3a, 3b, 3c and Ans, 4a, 4b, 4c). Crystallographic structural characterization of 1, 1b, 2, 2a, 2b, 2c, 3, 3a and 4c illustrates that the steric demand of mesityl group appreciably influences primary geometry around the 5-coordinate Te(IV) atom when it is bound directly to it. It also makes the Te atom inaccessible for the ubiquitous Te?X intermolecular secondary bonding interactions that result in supramolecular structures. In the crystal lattice of symmetrical telluroether 1, an interesting supramolecular synthon based upon reciprocatory weak C-H?O H-bonding interaction gives rise to chains via self-assembly.  相似文献   

18.
Acetic acid-catalyzed condensation of 2-amino-3-(1-imino-2,2,2-trifluoroethyl)-1,1,4,5,6,7-hexafluoroindene (1b) with acetone and cyclopentanone gives 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene (2a) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3a) together with small amounts of 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene (2b) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3b), respectively. When acted upon by (CH3)2SO4 compounds 2, 3 were converted into corresponding fluorine-containing 1-methyl-1,2-dihydro-1,3-diazafluorenes 6, 7. 4a-Chloro-5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,4a-dihydro-1,3-diazafluorene (8) has been synthesized by the interaction of compound 2 with SOCl2. Solution of compound 2 as well as 8 in CF3SO3H-CD2Cl2 generated 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2,3,4-tetrahydro-1,3-diazafluorene-4-yl cation (2c). The structures of compounds 2, 3, 6-8 have been determined by single crystal X-ray diffraction.  相似文献   

19.
Synthesis, structures, and catalysis studies of gold(I) complexes of N-heterocyclic carbenes namely, a di-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene], a mono-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene] and a non-functionalized [1,3-di-i-propyl-benzimidazol-2-ylidene], are reported. Specifically, the gold complexes, [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene]AuCl (1c), [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]AuCl (2c), and [1,3-di-i-propyl-benzimidazol-2-ylidene]AuCl (3b), were prepared from the respective silver complexes 1b, 2b, and 3a by treatment with (SMe2)AuCl in good yields following the commonly used silver carbene transfer route. The silver complexes 1b, 2b, and 3a were synthesized from the respective imidazolium halide salts by the reactions with Ag2O. The N-heterocyclic carbene precursors, 1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazolium chloride (1a) and 1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazolium chloride (2a), were synthesized by the direct reactions of cyclohexene oxide and imidazole with chloroacetophenone and benzyl chloride respectively. The gold (1c, 2c, and 3b) and the silver (3a) complexes along with a new O-functionalized imidazolium chloride salt (1a) have been structurally characterized by X-ray diffraction. The structural studies revealed that geometries around the metal centers were almost linear in these gold and silver complexes. The gold (1c, 2c, and 3b) complexes efficiently catalyze ring-opening polymerization (ROP) of l-lactide under solvent-free melt conditions producing polylactide polymer of moderate to low molecular weights with narrow molecular weight distributions.  相似文献   

20.
A series of thirty eight novel imidazolidineiminothiones (6a-g, 10a-h, 13a,b, 15a-d, and 16a), 5-thioxoimidazolidine-2,4-diones (7a-d, 11a-e, 14a,b, and 16b), and bis-imidazolidineiminothiones (17-20) with various fluorinated aromatic substituents at N-(1) and N-(3) were prepared in 75-85% yields. The imidazolidineiminothiones were synthesized from fluorinated N-arylcyanothioformanilides and substituted aromatic isocyanates, and by the reactions of fluorinated aromatic isocyanates with fluorinated and non-fluorinated aromatic N-arylcyanothioformanilides. Subsequent hydrolysis of selected products produced the corresponding 5-thioxoimidazolidine-2,4-diones. Preliminary screening of several compounds against Ehrlich ascites carcinoma (EAC) cells indicated that 6f and 16a were the most active (90% and 80% inhibition, respectively). Further evaluation for cytotoxicity against other tumor cell lines gave IC50 values ranging from 0.67 to 3.83 μg/mL, where compounds 15a and 16a were markedly active against all cell lines. This highlights the synergistic effect of the suitably positioned fluorinated substituents on N-(1) and N-(3) of the imidazolidineiminothiones. Compounds 6a,e-g, 10a-c, 13b, 15a-d, and 17-20 were tested against microbial organisms (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Sarcina lutea), and fungal strains (Candida albicans, Aspergillus niger, and Aspergillus flavus). Whereas compound 6a exhibited the highest antibacterial activity against Gram positive and Gram negative bacteria, 13b displayed the strongest antifungal activity against all fungal strains, reaching as high as 30 mm. Finally, 15a,b,d were subjected to in vitro testing of antiviral activity against hepatitis A virus (HAV), human herpes simplex virus 1 (HSV1), and Coxsackie B4 (COxB4) viral strain, where 15b was the most effective, reducing virus plaque count of HSV1 and COxB4 by 50% and 60%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号