首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

2.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

3.
The aimed introduction of the polyfluoroorgano groups (4-C5F4N), C6F13C2H4, and C2F5 into methoxy group-containing boron electrophiles is reported. The new compounds obtained after transformations K[(4-C5F4N)BF3], (4-C5F4N)BF2, K[C6F13C2H4BF3], C6F13C2H4BF2, K[(C2F5)2B(OMe)2], and K[(C2F5)2BF2] were isolated and characterised. Additionally some of their precursors as there are Li(4-C5F4N), Li[(4-C5F4N)B(OMe)3], (4-C5F4N)B(OH)2 and the by-products Li[(4-C5F4N)2B(OMe)2], (4-C5F4N)2BOH, and K[(4-C5F4N)2BF2] are described. The usefulness of polyfluoroorganodifluoroboranes for introducing polyfluoroorgano groups into hypervalent FEF bonds is demonstrated by the synthesis of [C6F5(4-C5F4N)I][BF4] and [p-FC6H4(trans-CF3CFCF)I][BF4].  相似文献   

4.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

5.
New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions   总被引:1,自引:0,他引:1  
New hydrophobic ionic liquids, 1-ethyl-3-methylimidazolium (EMI+) perfluoroalkyltrifluoroborate ([RfBF3]) (Rf=C2F5,n-C3F7, and n-C4F9) were prepared in high yield and purity by facile neutralization of 1-ethyl-3-methylimidazolium (EMI+) methylcarbonate (MeOCO2) with aqueous Hsolv.[RfBF3]solv. solutions. All the salts prepared were characterized by , , NMR, MS and elemental analysis, and thermal and electrochemical properties of these salts have been measured. [EMI][C2F5BF3] melted at lower temperature (−1 °C) than [EMI][BF4] (13 °C), resulting in higher conductivity at low temperature. Its application to double-layer capacitors (DLCs) was examined.  相似文献   

6.
Reaction of Na[AuCl4] with 2-vinylpyridine (vinpy) and 2-ethylpyridine (etpy) affords the N-bonded adducts Au(Rpy)Cl3 (R = CH2CH, vinpy; CH3CH2, etpy). Cationic adducts, [Au(vinpy)2Cl][X]2 (X = BF4, PF6) and [Au(etpy)2Cl2][BF4], were also obtained by reaction of Au(Rpy)Cl3 with Rpy (1:1) and excess NaBF4 or KPF6. Thermal activation of Au(vinpy)Cl3 in water gives the five-membered cycloaurated derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)Cl2] formally resulting through a trans nucleophilic addition of a chloride onto the CC bond. No cyclometallated derivatives are obtained by reactions of Au(etpy)Cl3. An X-ray crystal structure determination on the PPh3 derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)(PPh3)Cl][PF6] was carried out.  相似文献   

7.
Two dinuclear RhI-cyclooctadiene complexes [1,4-(cod)Rh(B(R’)pz2)-C6H4-(B(R’)pz2)Rh(cod)], linked by a ditopic scorpionate ligand, have been prepared and fully characterized (R′ = Ph (2), C6F5 (2F); pz = pyrazolide). Both compounds were tested as catalysts for phenylacetylene polymerization but showed no catalytic activity. Attempts at the synthesis of corresponding complexes of the sterically more demanding ligands (R′ = Ph (4), C6F5 (4F); pzPh = 3-phenylpyrazolide) resulted in B-N bond cleavage and formation of the dinuclear complex [(cod)Rh(μ-pzPh)2Rh(cod)] (5). Complex 5 proved to be an efficient catalyst for the preparation of highly stereoregular head-to-tail cis-transoidal poly(phenylacetylene).  相似文献   

8.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

9.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

10.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

11.
Previously unknown polyfluorocyclohexenyl, and acyclic perfluoroalkenyliodine tetrafluorides were prepared in high yields. Perfluorocyclohex-1-enyliodine tetrafluoride was obtained from pentafluoroiodobenzene using XeF2-NbF5 in aHF. The reaction of C6F5I with the weaker fluorooxidant XeF2-BF3 in 1,1,1,3,3-pentafluorobutane (PFB) yielded C6F5IF2, perfluorocyclohexa-1,4-dienyliodine difluoride, C6F5IF4, perfluorocyclohexa-1,4, and 1,3-dienyliodine tetrafluoride as intermediate products on parallel reaction routes. Both perfluoroalkenyl iodides, cis- and trans-(CF3)2CFCFCFI, reacted with XeF2-BF3 in PFB to give the corresponding perfluoroalkenyliodine tetrafluorides, cis- and trans-(CF3)2CFCFCFIF4. Even perfluoroalkyl iodides can be fluorinated by this reagent as was demonstrated by the preparation of C6F13IF4 from C6F13I. Generally, the CFCIFn fragment (n = 0, 2, or 4) in cyclic or acyclic perfluoroalkenyliodine compounds RFIFn did not undergo a transformation to the corresponding perfluoroalkyliodine compound. Furthermore, no perfluoroorganoiodine hexafluorides were detected in reactions with the fluorooxidant XeF2-aHF or BF3 or NbF5.  相似文献   

12.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

13.
New experimental results on perfluoroalkylation of C60 and C70 with the use of RfI (Rf = CF3, C2F5, n-C3F7, n-C4F9, and n-C6F13), along with a critical overview of the existing synthetic methods, are presented. For the selected new fullerene (Rf)n compounds we report spectroscopic, electrochemical and structural data, including improved crystallographic data for the isomers of C70(C2F5)10 and C60(C2F5)10, and the first X-ray structural data for the dodecasubstituted perfluoethylated C70 fullerene, C70(C2F5)12, which possesses unprecedented addition pattern.  相似文献   

14.
Rod-like organogold(I) complexes [AuR(CNC6H4O(O)CC6H4OC10H21-p)] were prepared and their liquid crystal behaviour was studied. Depending on the nature of R, the synthetic methodology was different. Thus, for R = substituted alkynyl ligands, the new compounds were prepared in two steps:(i) reaction of [AuCl(tht)] (tht = tetrahydrothiophene) with R′CCH(R′ = C5H4N, C6H4CN, C6H4CCC5H4N) in the presence of NaOAc to give insoluble [Au(CCR′)]n; (ii) reaction of the latter polymers with the isonitrile CNC6H4O(O)CC6H4OC10H21-p.For R = fluorinated aryls, the complexes were prepared by displacement of tht from the compounds [AuR(tht)] (R = C5F4N, C6F4C5H4N, C6F5) with isonitrile.In addition, an unexpected ionic derivative [Au(CCC5H4NC10H21)2][Au(CCC5H4N)2] was formed in the reaction between [PPh4][Au(CCC5H4N)2] and C10H21I. All these compounds have been characterized by IR and NMR spectroscopy and mass spectrometry. The X-ray crystal structure of the compound with R = CCC5H4N shows a linear molecule in which the gold atom is surrounded by the pyridine-containing acetylene and the isonitrile ligand, and no direct gold-gold interaction occurs. Six of the neutral compounds are liquid crystals and their optical, thermal and thermodynamic data were analyzed and compared in terms of molecular polarizability.  相似文献   

15.
The reaction of [PtX2(L)] (X = Cl, Br, I; L = NH2CH2CH2NY2; Y = Et, Me) with thallium(I) carbonate and a polyfluorobenzene (RF) in pyridine (py) yields the platinum(II) complexes, [Pt{N(R)CH2CH2NY2}X(py)] (R = C6F5, 4-HC6F4, 4-BrC6F4, or 4-IC6F4, Y = Et (1), Me (2), X = Cl, Br or I) in an improved synthesis. From the reaction of [PtCl2(H2NCH2)2)] with Tl2CO3 and 1,2,3,4-tetrafluorobenzene or 2-bromo-1,3,4,5-tetrafluorobenzene in py, the new complexes [Pt(NRCH2)2(py)2] (3) (R = C6H2F3-2,3,6 and C6HBrF3-2,3,5,6) have been isolated but the latter preparation also gave product(s) with a 4-bromo-2,3,5-trifluorophenyl group. From an analogous preparation in 4-ethylpyridine (etpy), [Pt(N(4-HC6F4)CH2)2(etpy)2] (4) was obtained. The X-ray crystal structures of (3) (R = C6HBrF3-2,3,5,6) and (4) were determined as well as that of the previously prepared (3) (R = 4-BrC6F4) and a more precise structure of (3) (R = 4-HC6F4) has been obtained.  相似文献   

16.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

17.
Lithium and tetraethylammonium perfluoroalkyltrifluoroborate salts, Li[RfBF3]·H2O and Et4N[RfBF3] (Rf=C2F5, n-C3F7 and n-C4F9), were prepared from the reactions of perfluoroalkylmagnesium reagents (RfMgBr) and B(OCH3)3, followed by fluorination by aq.KHF2 and aq.HF solutions and the cation exchange reaction of the resultant K[RfBF3]. All the salts prepared were characterized by NMR, NMR, NMR, NMR, IR, MS and elemental analysis.  相似文献   

18.
[Cu(XeF2)6](SbF6)2 crystallizes in the rhombohedral symmetry with a = 1003.6(2) pm, c = 2246.5(12) pm at 200 K and Z = 3, space group (No. 148). [Zn(XeF2)6](SbF6)2 is isostructural to [Cu(XeF2)6](SbF6)2 with a = 1007(2) pm and c = 2243(6) pm. The structures are characterized by isolated homoleptic [M(XeF2)6]2+ (M = Cu, Zn) cations and of [SbF6] octahedra.Reactions of M(SbF6)2 (M = Cu, Zn) with XeF2 in anhydrous hydrogen fluoride (aHF) and reactions of MF2 with Xe2F3SbF6 in aHF always yield a mixture of [M(XeF2)6](SbF6)2, Xe2F3SbF6 and MF2.  相似文献   

19.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

20.
A series of titanium complexes [(Ar)NC(CF3)CHC(R)O]2TiCl2 (4b: Ar = -C6H4OMe(p), R = Ph; 4c: Ar = -C6H4Me(p), R = Ph; 4d: Ar = -C6H4Me(o), R = Ph; 4e: Ar = α-Naphthyl, R = Ph; 4f: Ar = -C6H5, R = t-Bu; 4g: Ar = -C6H4OMe(p); R = t-Bu; 4h: Ar = -C6H4Me(p); R = t-Bu; 4i: Ar = -C6H4Me(o); R = t-Bu) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4b, 4c and 4h adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4b-c and 4f-i are active catalysts for ethylene polymerization and ethylene/norbornene copolymerization, and produce high molecular weight polyethylenes and ethylene/norbornene alternating copolymers. In addition, the complex 4c/MMAO catalyst system exhibits the characteristics of a quasi-living copolymerization of ethylene and norbornene with narrow molecular weight distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号