首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we establish some new Lyapunov type inequalities for second-order half-linear differential equations, which almost generalize and extend all related existing results in the literature.  相似文献   

2.
We show that the combination of the formalism underlying the principle of monomiality and of methods of an algebraic nature allows the solution of different families of partial differential equations. Here we use different realizations of the Heisenberg–Weyl algebra and show that a Sheffer type realization leads to the extension of the method to finite difference and integro-differential equations.  相似文献   

3.
The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical boundary value problems for Laplace’s equation, the Oseen equations and the biharmonic equation are given as examples.  相似文献   

4.
We obtain the expression of the explicit solution to a class of multipoint boundary value problems of Neumann type for linear ordinary differential equations and apply these results to study sufficient conditions for the existence of solution to linear functional differential equations with multipoint boundary conditions, considering the particular cases of equations with delay and integro-differential equations.  相似文献   

5.
This paper is devoted to provide some new results on Lyapunov type inequalities for the periodic boundary value problem at higher eigenvalues. Our main result is derived from a detailed analysis on the number and distribution of zeros of nontrivial solutions and their first derivatives, together with the study of some special minimization problems. This allows to obtain the optimal constants. Our applications include the Hill's equation where we give some new conditions on its stability properties and also the study of periodic and nonlinear problems at resonance where we show some new conditions which allow to prove the existence and uniqueness of solutions.  相似文献   

6.
7.
8.
We develop an arithmetic analogue of linear partial differential equations in two independent “space-time” variables. The spatial derivative is a Fermat quotient operator, while the time derivative is the usual derivation. This allows us to “flow” integers or, more generally, points on algebraic groups with coordinates in rings with arithmetic flavor. In particular, we show that elliptic curves carry certain canonical “arithmetic flows” that are arithmetic analogues of the convection, heat, and wave equations, respectively. The same is true for the additive and the multiplicative group.  相似文献   

9.
Yanli Shi 《Applicable analysis》2013,92(12):1421-1432
In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by “Shooting” method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by “Matching” method.  相似文献   

10.
An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in ordinary differential equations (ODEs).  相似文献   

11.
We provide concentration inequalities for solutions to stochastic differential equations of pure not-necessarily Poissonian jumps. Our proofs are based on transportation cost inequalities for square integrable functionals of point processes with stochastic intensity and elements of stochastic calculus with respect to semi-martingales. We apply the general results to solutions of stochastic differential equations driven by renewal and non-linear Hawkes point processes.  相似文献   

12.
In the present paper, we present a method for constructing a Lyapunov functional for some delay differential equations in virology and epidemiology. Here some delays are incorporated to the original ordinary differential equations, for which a Lyapunov function is already obtained. We present simple and clear explanation of our method using some models whose Lyapunov functionals are already obtained. Moreover, we present several new results for constructing Lyapunov functionals using our method.  相似文献   

13.
In this paper we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations. Previously, we observed that when the boundary value problems are formulated as boundary integral equations of classical potential theory, the solutions are representable by series of elementary functions, to arbitrary order, for all but finitely many values of the angles. Here, we extend this observation to all values of the angles. We show that the solutions near corners are representable, to arbitrary order, by linear combinations of certain non-integer powers and non-integer powers multiplied by logarithms.  相似文献   

14.
This paper studies the practical stability of the solutions of nonlinear impulsive functional differential equations. The obtained results are based on the method of vector Lyapunov functions and on differential inequalities for piecewise continuous functions. Examples are given to illustrate our results.  相似文献   

15.
This survey paper contains a surprisingly large amount of material and indeed can serve as an introduction to some of the ideas and methods of singular perturbation theory. Starting from Prandtl's work a large amount of work has been done in the area of singular perturbations. This paper limits its coverage to some standard singular perturbation models considered by various workers and the numerical methods developed by numerous researchers after 1984–2000. The work done in this area during the period 1905–1984 has already been surveyed by the first author of this paper, see [Appl. Math. Comput. 30 (1989) 223] for details. Due to the space constraints we have covered only singularly perturbed one-dimensional problems.  相似文献   

16.
The Type-II hidden symmetries are extra symmetries in addition to the inherited symmetries of the differential equations when the number of independent and dependent variables is reduced by a Lie point symmetry. In [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622] Abraham-Shrauner and Govinder have analyzed the provenance of this kind of symmetries and they developed two methods for determining the source of these hidden symmetries. The Lie point symmetries of a model equation and the two-dimensional Burgers' equation and their descendants were used to identify the hidden symmetries. In this paper we analyze the connection between one of their methods and the weak symmetries of the partial differential equation in order to determine the source of these hidden symmetries. We have considered the same models presented in [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622], as well as the WDVV equations of associativity in two-dimensional topological field theory which reduces, in the case of three fields, to a single third order equation of Monge-Ampère type. We have also studied a second order linear partial differential equation in which the number of independent variables cannot be reduced by using Lie symmetries, however when is reduced by using nonclassical symmetries the reduced partial differential equation gains Lie symmetries.  相似文献   

17.
Combining Fourier series expansion with recursive matrix formulas, new reliable algorithms to compute the periodic, non-negative, definite stabilizing solutions of the periodic Riccati and Lyapunov matrix differential equations are proposed in this paper. First, periodic coefficients are expanded in terms of Fourier series to solve the time-varying periodic Riccati differential equation, and the state transition matrix of the associated Hamiltonian system is evaluated precisely with sine and cosine series. By introducing the Riccati transformation method, recursive matrix formulas are derived to solve the periodic Riccati differential equation, which is composed of four blocks of the state transition matrix. Second, two numerical sub-methods for solving Lyapunov differential equations with time-varying periodic coefficients are proposed, both based on Fourier series expansion and the recursive matrix formulas. The former algorithm is a dimension expanding method, and the latter one uses the solutions of the homogeneous periodic Riccati differential equations. Finally, the efficiency and reliability of the proposed algorithms are demonstrated by four numerical examples.  相似文献   

18.
Hidden symmetries of differential equations are point symmetries that arise unexpectedly in the increase (equivalently decrease) of order, in the case of ordinary differential equations, and variables, in the case of partial differential equations. The origins of Type II hidden symmetries (obtained via reduction) for ordinary differential equations are understood to be either contact or nonlocal symmetries of the original equation while the origin for Type I hidden symmetries (obtained via increase of order) is understood to be nonlocal symmetries of the original equation. Thus far, it has been shown that the origin of hidden symmetries for partial differential equations is point symmetries of another partial differential equation of the same order as the original equation. Here we show that hidden symmetries can arise from contact and nonlocal/potential symmetries of the original equation, similar to the situation for ordinary differential equations.  相似文献   

19.
In this paper we study the rotation in R3 and we apply it to resolve some partial differential equations and the system of partial differential equations. For this, define first the rotation R(ψ,θ,φ) matrix and it's inverse and we prove that they are an orthogonal matrix. Then we calculate the eigenvalues of R(ψ,θ,φ) for different cases. Finally, for particular values of ψ, θ and φ, we apply the rotation to eliminate some partial derivatives in partial differential and system of partial differential equations to resolve them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号