首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

2.
Fluorophilic ethers having the structure RC(CF3)2O(CH2)3CnF2n + 1 are obtained in high yields, when F-tert-butyl alcohol (R = CF3), F-acetone hydrate (R = O(CH2)3CnF2n + 1), F-pinacol (R = C(CF3)2O(CH2)3CnF2n + 1) are reacted with 3-perfluoroalkyl-1-propanols (CnF2n + 1(CH2)3OH, n = 4, 6, 8, 10) in a Mitsunobu reaction (Ph3P/DIAD [i-PrO2CN = NCO2Pr-i]/ether). The parent lipophilic ethers with the structure of (CF3)3CO(CH2)3CnH2n + 1 were prepared analogously using the corresponding fatty alcohols and F-tert-butyl alcohol. To achieve ideal separations, products were transferred to orthogonal phases relative to the other reaction components using fluorous extraction, fluorous solid-organic liquid filtration, or steam-distillation. Selected physical properties including melting and boiling point, together with fluorous partition coefficients of these ethers were determined and the figures obtained were qualitatively analyzed using relevant thermodynamic theories. Some of these ethers are liquids with rather low freezing points and are miscible with fluorocarbon solvents.  相似文献   

3.
Treatment of the mono(salicylaldiminato)titanium complexes {3-But-2-(O)C6H3CHN(Ar)}TiCl3(THF) (Ar = C6H5, 2,4,6-Me3C6H2 or C6F5) with the potassium β-enaminoketonates (C6H5)NC(CH3)C(H)C(R)OK (R = CH3, CF3) yielded the first examples of heteroligated (salicylaldiminato) (β-enaminoketonato)titanium dichloride complexes. The complex {3-But-2-(O)C6H3CHN(C6H5)}{(C6H5)NC(CH3)C(H)C(CH3)O}TiCl2 was structurally characterized by X-ray diffraction and has an orientation with trans-O,O,cis-Cl,Cl, cis-N,N distorted octahedral geometry. These complexes polymerize ethene when activated with MAO; the highest productivity, 5650 kg PE (mol metal)−1 h−1 atm−1, was afforded by {3-But-2-(O)C6H3CHN(C6F5)}{(C6H5)NC(CH3)C(H)C(CF3)O}TiCl2 at 60 °C.  相似文献   

4.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

5.
Treatment of bis(fluoroalkyl) phosphites (RFCH2O)2P(O)H, where RF was CF3 or C2F5 with sulfur in pyridine at 80 °C gave salts of structure [(RFCH2O)2P(O)SH]NC5H5 in 90 and 88% yield, respectively. The salts reacted with alkyl iodides in acetonitrile at 50 °C to furnish bis(fluoroalkyl) S-alkyl phosphorothiolates (RFCH2O)2P(O)SR, where R was Me, Et, n- and i-Pr (when RF = CF3) and Me (when RF = C2F5). Yields ranged from 21 to 57%. Bis(trifluoroethyl) S-methyl phosphorothiolate (CF3CH2O)2P(O)SMe underwent fluorination by silver(I) fluoride in acetonitrile at room temperature to yield the phosphorofluoridate (CF3CH2O)2P(O)F in 75% yield. Tris(fluoroalkyl) phosphorothionates (RFCH2O)3P = S, where RF was CF3, C2F5 and C3F7, were prepared in 30-34% yield by heating the tris(fluoroalkyl) phosphites (RFCH2O)3P and sulfur to 200 °C in a sealed tube for 8 h.  相似文献   

6.
The reaction of 1,1′-bis(pentafluorophenyl)ferrocene with fluorous alkoxides having the general formula NaOCH2(CF2)nCF3 (n = 0, 2, 5, 7, and 8) afforded a series of ferrocenes of general formula {η5-4-[CF3(CF2)nCH2O]C6F4C5H4}2Fe (1). The reaction of 1,1′-bis(4-tetrafluoropyridyl)ferrocene with the same fluorous alkoxides afforded a series of ferrocenes of general formula (η5-4-{2,6-[CF3(CF2)nCH2O]2C5F2N}C5H4)2Fe (2). Perfluoro(methylcyclohexane)/toluene partition coefficients increase with the number (2 or 4) and length (n) of the fluorous substituent. Complexes 1a and 2a (both n = 0) were structurally characterized.  相似文献   

7.
The reaction of [PtX2(L)] (X = Cl, Br, I; L = NH2CH2CH2NY2; Y = Et, Me) with thallium(I) carbonate and a polyfluorobenzene (RF) in pyridine (py) yields the platinum(II) complexes, [Pt{N(R)CH2CH2NY2}X(py)] (R = C6F5, 4-HC6F4, 4-BrC6F4, or 4-IC6F4, Y = Et (1), Me (2), X = Cl, Br or I) in an improved synthesis. From the reaction of [PtCl2(H2NCH2)2)] with Tl2CO3 and 1,2,3,4-tetrafluorobenzene or 2-bromo-1,3,4,5-tetrafluorobenzene in py, the new complexes [Pt(NRCH2)2(py)2] (3) (R = C6H2F3-2,3,6 and C6HBrF3-2,3,5,6) have been isolated but the latter preparation also gave product(s) with a 4-bromo-2,3,5-trifluorophenyl group. From an analogous preparation in 4-ethylpyridine (etpy), [Pt(N(4-HC6F4)CH2)2(etpy)2] (4) was obtained. The X-ray crystal structures of (3) (R = C6HBrF3-2,3,5,6) and (4) were determined as well as that of the previously prepared (3) (R = 4-BrC6F4) and a more precise structure of (3) (R = 4-HC6F4) has been obtained.  相似文献   

8.
9.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

10.
Twenty nine bis(fluoroalkyl) phosphates (RFO)2P(O)OR were prepared in 18-75% yield by treating phosphorochloridates (RFO)2P(O)Cl, where RF was HCF2CH2, HCF2CF2CH2, H(CF2)4CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with methanol, ethanol, propanol and isopropanol in diethyl ether in the presence of triethylamine. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with methanol, ethanol and propanol, but not with isopropanol - even on heating in the presence of the catalyst 4-dimethylaminopyridine - due to steric hindrance at phosphorus. The relative reactivities of three of the chloridates decreased in the order [(CF3)2CHO]2P(O)Cl > [(FCH2)2CHO]2P(O)Cl > [(CH3)2CF3CO]2P(O)Cl. Also described is the synthesis of phosphates (CF3CH2O)2P(O)OCH2R, where R = CH2Br, CH2Cl, CH2F and CHF2, and diphosphates [H(CF2)nCH2O]2P(O)OCH2(CF2)2CH2OP(O)[OCH2(CF2)nH]2, where n = 1, 2 and 4.  相似文献   

11.
Dimethyl phosphorochloridate reacted with RFCH2NH2 in ether in the presence of Et3N to afford (MeO)2P(O)NHCH2RF, where RF = CF3 and C2F5, in 39 and 47% yield, respectively. Similar reactions with di-n-propyl and diisopropyl phosphorochloridates could be effected only with H2NCH2CF3 when 4-dimethylaminopyridine catalyst was added and (n-PrO)2P(O)NHCH2CF3 and (i-PrO)2P(O)NHCH2CF3 were isolated in 49 and 25% yield, respectively. Treatment of POCl3 with one molar equivalent each of H2NCH2CF3 and Et3N permitted the synthesis of Cl2P(O)NHCH2CF3 in 43% yield. Bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl, where RF = C2F5CH2, C3F7CH2 and (CF3)2CH, reacted with 2,2,2-trifluoroethylamine and 2,2,3,3,3-pentafluoropropylamine to furnish phosphoramidates (RFO)2P(O)NHCH2R, where R = CF3 or C2F5, in yields of 32-67%.  相似文献   

12.
Min Shi  Shi-Cong Cui  Ying-Hao Liu 《Tetrahedron》2005,61(21):4965-4970
In this paper, we describe a useful Mannich-type reaction in fluorous phase. By use of perfluorodecalin (C10F18, cis- and trans-mixture) as a fluorous solvent and perfluorinated rare earth metal salts such as Sc(OSO2C8F17)3 or Yb(OSO2C8F17)3 (2.0 mol%) as a catalyst, the Mannich-type reaction of arylaldehydes with aromatic amines and (1-methoxy-2-methylpropenyloxy)trimethylsilane can be performed for many times without reloading the catalyst and the fluorous solvent.  相似文献   

13.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

14.
The title compound, gem-amidovinylsulfone 3, was synthesized stereoselectively by aldolic condensation of N,N-diethylphenylsulfonylacetamide 1 on imidazo[1,2-a]pyridine-2-carbaldehyde 2 adding Et3N at the end. The X-ray crystal structure of 3 [C20H21N3O3S: Mr=383.5, monoclinic, P21, a=8.191(4) Å, b=21.132(2) Å, c=11.752(1) Å, β=96.40(2)°, V=2022(1) Å3, Z=4 (two molecules per asymmetric unit), Dcalc=1.260 g cm−3, λ(Mo Kα)=0.71073 Å, μ=0.184 mm−1, F(000)=808, T=293(2)K, R=0.059 for 5105 observed reflections with I≥2σ(I)] was determined, and confirmed the (E) configuration.  相似文献   

15.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

16.
Stable polyfluorinated bis- and tris-(alkoxy)methyl cations were prepared by the reaction of the corresponding difluoroformals (RfO)2CF2 (Rf = -CH2CF3, -CH(CF3)2, -CH2CF2Cl) with an excess of SbF5. Although the cation (CF3CH2O)2CF+ (1a) is stable at ambient temperature, the chlorinated analog (ClCF2CH2O)2CF+ (3a) can be generated only at low temperature in SO2ClF solvent and rapidly decomposes at ambient temperature. Although the salt [(CF3)2CHO]2CF+SbnF5n+1 (2a) is slightly more stable than the salt of cation 3a, at ambient temperature it undergoes rapid disproportionation with formation of equal amounts of [(CF3)2CHO]3C+SbnF5n+1 (2b) and CF3OCH(CF3)2 (2c). Stable solid salt 2b (n = 2) was isolated and fully characterized by 1H, 19F and 13C NMR spectroscopy and its structure was confirmed by single crystal X-ray diffraction.  相似文献   

17.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

18.
Debaprasad Mandal 《Tetrahedron》2010,66(5):1070-1077
Perfluoromethyldecalin solutions of the fluorous alkyl halides Rf8(CH2)mX (m=2, 3; X=Cl, I) are inert toward aqueous NaCl, KI, KCN, and NaOAc. However, substitution occurs at 100 °C in the presence of 10 mol % of the fluorous ammonium salts (Rf8(CH2)2)(Rf8(CH2)5)3N+ I (1) or (Rf8(CH2)3)4N+ Br (2) (10 mol %), which are fully or partially soluble in perfluoromethyldecalin under these conditions. Stoichiometric reactions of (a) 1 and Rf8(CH2)3Br, and (b) 2 and Rf8(CH2)2I are conducted in perfluoromethyldecalin at 100 °C, and yield the same Rf8(CH2)mI/Rf8(CH2)mBr equilibrium ratio (60-65:40-35). This shows that ionic displacements can take place in extremely nonpolar fluorous phases, and suggests a classical phase transfer mechanism for the catalyzed reactions. Interestingly, the non-fluorous ammonium salt mixture CH3(CH3(CH2)m)3N+ Cl (3, Aliquat® 336; m=2:1 7/9) also catalyzes halide substitutions, but under triphasic conditions with 3 suspended between the lower fluorous and upper aqueous layers. NMR experiments establish very low solubilities in both phases, suggesting interfacial catalysis.  相似文献   

19.
Fluorinated organodifluoroboranes RfBF2 are in general suitable reagents to transform XeF2 and RIF2 into the corresponding onium tetrafluoroborate salts [RfXe][BF4] and [R(Rf)I][BF4], respectively. (4-C5F4N)BF2 and trans-CF3CFCFBF2 which represent boranes of high acidity form no Xe-C onium salts in reactions with XeF2 but give the desired iodonium salts with RIF2 (R = C6F5, o-, m-, p-C6FH4). The reaction of (4-C5F4N)BF2 with XeF2 ends with a XeF2-borane adduct. C6F5Xe(4-C5F4N), the first Xe-(4-C5F4N) compound, was obtained when C6F5XeF was reacted with Cd(4-C5F4N)2. We describe the synthesis of (4-C5F4N)IF2 and reactions of (4-C5F4N)IF2 and C6F5IF2 with (4-C5F4N)BF2. Analogous to [(4-C5F4N)2I][BF4] and [C6F5(4-C5F4N)I][BF4] aryl(perfluoroalkenyl)iodonium salts [R(R′)I][BF4] were obtained from RIF2 (R = C6F5, o-, m-, p-C6FH4) and R′BF2 (R′ = trans-CF3CFCF, CF2CF). The gas phase fluoride affinities pF of selected fluoroorganodifluoroboranes RfBF2 and their hydrocarbon analogs are calculated (B3LYP/6-31+G*) and discussed with respect to their potential to introduce Rf-groups into hypervalent EF2 bonds. Four aspects which influence the transformation of hypervalent EF2 bonds (E = Xe, R′I) under the action of Lewis acidic reagents RAFn−1 (A = B, P; n = 3, 5) into the corresponding [RE][AFn+1] salts are presented and the important role of the acidity is emphasized. Fluoride affinities may help to plan the introduction of organo groups into EF2 moieties and to expand the types of acidic reagents. Thus C6H5PF4 with a pF value comparable to that of RfBF2 compounds is able to introduce the C6H5 group into RIF2 (R = C6F5, p-C6FH4).  相似文献   

20.
With the readily available fluorous alkanols RfCH2OH, a series of novel fluorous-ponytailed bpy ligands, 4,4′-bis(RfCH2OCH2)-2,2′-bpy (1ae), were prepared and treated with [PdCl2(CH3CN)2] to result in the corresponding novel Pd complexes [PdCl2(4,4′-bis(RfCH2OCH2)-2,2′-bpy)] (2ae) where Rf = n-C3F7 (a), HCF2(CF2)3 (b), HCF2(CF2)7 (c), n-C8F17 (d), n-C10F21 (e). The new ligands and Pd complexes were spectroscopically characterized by multi-nuclei NMR (1H, 19F and 13C), FTIR and high resolution mass (FAB). The structure for the Pd complex 2b, the first with fluorinated ponytails on bpy and not on phosphine, was also established by a single crystal X-ray diffraction study. The TGA data of both ligands and Pd complexes indicated that the Pd-complexes were resistant to higher temperatures than the corresponding ligands. The Pd catalysts derived from 2ac showed an almost quantitative conversion and could be reused for eight runs with Heck reactions, in that the products and unspent reactants were directly removed by distillation. With the highest fluorine content in the series, Pd complex 2e was successfully applied in the Heck reaction using the fluorous biphasic catalysis strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号