首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olivine-type LiFePO4 appears to be the best candidate for large size Lithium ion batteries compared with conventional cathode materials such as LiCoO2, LiNiO2 and LiMnO4 based on cost, environmental benign and safety. In addition, LiFePO4 has a large theoretical capacity of 170 mAhg-1, good cycle stability, and a flat discharge potential of 3.4V versus Li/Li+. However, its low ionic/electronic conductivity limits the electrochemical prosperities of this material, especially its rate ca…  相似文献   

2.
Layered LiNi1/3Co1/3Mn1/3O2 has the isostructure of α-NaFeO2 and shows high rate capacity with stable cycleability. Furthermore, the thermal behavior of this material is milder than that of lithium nickel oxide and lithium cobalt oxide. In addition, it is expected to be stable at elevated temperatures. Therefore LiNi1/3Co1/3Mn1/3O2 may be the most promising cathode materials of lithium-ion secondary battery. In this research, LiNi1/3Co1/3Mn1/3O2 was prepared by solid-state reaction, s…  相似文献   

3.
《Journal of Energy Chemistry》2017,26(6):1267-1275
The lithium–sulfur batteries show the great potential to be the most promising candidate for high energy applications. However, the shuttling of soluble polysulfides deteriorates the battery performance tremendously. To suppress the diffusion of soluble polysulfides, diatomite that has abundant natural three-dimensional ordered pores is incorporated into the cathode to trap polysulfides. The composite cathode material(S-DM-AB for short), including sulfur(S), diatomite(DM), and acetylene black(AB) is prepared by an impregnation method. For comparison, another composite cathode material(S-AB for short) including sulfur and acetylene black is also prepared by the same method. The battery with S-DMAB composite cathode material delivers a discharge capacity of 531.4 m Ah/g after 300 cycles at 2 C with a capacity retention of 51.6% at room temperature. By contrast, the battery with S-AB composite cathode material delivered a capacity of only 196.9 m Ah/g with a much lower capacity retention of 18.6% under the same condition. The addition of diatomite in the cathode is proved to be a cheap and effective way to improve the life time of the lithium sulfur batteries.  相似文献   

4.
Today, batteries with high capacity, good cyclability, long life and environmental goodness are much required to meet some pressing demands of our modern society. In principle, lithium ion cells can satisfy these requirements1. But the properties of the cathode materials have limited the further development of the lithium ion cells. The studied cathode materials before were mainly LiCoO2, LiMn2O4, LiNiO2. The LiCoO2 has disadvantages including cost and environmental risk although it is…  相似文献   

5.
0IntroductionMany efforts have been made to develop newmaterials as an alternative to LiCoO2due to the rela-tively high cost and toxicity of Co.Much attention hasbeen paid to layered structure cathode materials suchas LiMnO2and LiNiO2due to their lower co…  相似文献   

6.
Many researchers have studied on perovskite oxide for its unique structure.Perovskite oxides,ABO_(3-δ),with different A and B metals have shown wide applications in many fields,in particular solid oxide electrolysers.SrFeO_(3-δ),typical perovskite oxides,in which iron is the mixed-valence cation with the capacity to change the chemical valence,have a wide range of oxygen nonstoichiometry.In this study,Sr_(0.9)Fe_(0.9)Zr_(0.1)O_(3-δ)(SFZO) is synthesized and then treated in 5%H_2/Ar and air at high temperature,exhibiting excellent redox stability.Redox-stable structure,oxygen vacancy and electrical properties of SFZO are investigated.Steam electrolysis is then performed with SFZO cathode under 5%H_2O/5%H_2/Ar and 5%H_2O/Ar atmospheres,respectively.The present results indicate that the SFZO is a novel promising cathode material for solid oxide steam electrolyser.  相似文献   

7.
The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co2O4(NCO) has received ever-growing interest as a potential cathode material for ZIBs,owing to the high theoretical capacity,rich source,cost-effective,and versatile redox nature.However,due to the slow dynamics of the NCO electrodes,its practical application in highperformance systems is severely limited.Herein,we report an electron densi...  相似文献   

8.
Co-electrolysis of CO_2 and H_2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO_2 emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO_2 put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO_2/H_2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO_2/H_2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO_2/H_2O co-electrolysis. Finally, different reaction modes of the CO_2/H_2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO_2 conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO_2/H_2O into more valuable chemicals, which will be a new research direction in the future.  相似文献   

9.
A novel synthetic method of microwave processing to prepare Li_2FeSiO_4 cathode materials is adopted.The Li_2FeSiO_4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing.Olivin-type Li_2FeSiO_4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700℃in 12 min.And the obtained Li_2FeSiO_4 materials show better electrochemical performance and microstructure than those of Li_2FeSiO_4 sample by the conventional solids...  相似文献   

10.
The layered compounds LiCoO2, LiNiO2 and spinel compound LiMn2O4 have served as very effective cathode active materials in lithium ion rechargeable batteries. Generally, their high conductive resistance easily results in a serious polarization and poor utilization of active materials. In order to make full use of the active materials and increase the capacity, the charge–discharge rate and the cycle life of lithium ion batteries, conductive additives are often added into the above cathode …  相似文献   

11.
In this work, we report a facile route for the synthesis of Li_3V_2(PO_4)_3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li_3V_2(PO_4)_3/C is also investigated. When used as a lithium-ion battery cathode, the optimized Li_3V_2(PO_4)_3/C(LVP-800) through calcination at 800 °C exhibits a high initial charge and discharge capacity. The excellent electrochemical performance of LVP-800 is attributed to the good crystallinity and uniform morphology of the electrode material. In addition, the residual carbon can also improve the conductivity and buffer the volume expansion during the Li-ion extraction/reinsertion. Meanwhile, charge compensation also plays an important role in excellent electrochemical performance.  相似文献   

12.
Practical Li-sulfur batteries require the high sulfur loading cathode to meet the large-capacity power demand of electrical equipment.However,the sulfur content in cathode materials is usually unsatisfactory due to the excessive use of carbon for improving the conductivity.Traditional cathode fabrication strategies can hardly realize both high sulfur content and homogeneous sulfur distribution without aggregation.Herein,we designed a cathode material with ultrahigh sulfur content of 88%(mass fraction)by uniformly distributing the water dispersible sulfur nanoparticles on three-dimensionally conductive graphene framework.The water processable fabrication can maximize the homogeneous contact between sulfur nanoparticles and graphene,improving the utilization of the interconnected conductive surface.The obtained cathode material showed a capacity of 500 mA·h/g after 500 cycles at 2.0 A/g with an areal loading of 2 mg/cm2.This strategy provides possibility for the mass production of high-performance electrode materials for high-capacity Li-S battery.  相似文献   

13.
It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode material with a rather large interlayer spacing of 13.0 A is prepared via a one-step hydrothermal approach.The battery with this cathode material and 3 M Zn(CF3SO3)2 electrolyte displays high specific capacity(355.2 mAh g-1 at 0.2 A g-1),great rate capability(240.8 mAh g-1 at 5 A g-1),and excellent cyclability(97.7% capacity retention over 2000 cycles).Such superior performances are ascribed to fast electrochemical kinetics,outstanding electrode/electrolyte interface stability,and nearly dendrite-free characteristic.Instead,when ZnSO4 or Zn(ClO4)2 is used to replace Zn(CF3SO3)2,the electrochemical performances become much inferior,due to the slow electrochemical kinetics,inhomogeneous Zn stripping/plating process,and the formation of large dendrites and byproducts.This work not only discloses a high-performance cathode material for aqueous zinc-ion batteries but also offers a reference for the choice of electrolyte salt.  相似文献   

14.
Bulk sulfur incorporating 3 wt% gold nano-powder is investigated as possible candidate to maximize the fraction of active material in the Li-S battery cathode.The material is prepared via simple mixing of gold with molten sulfur at 120℃,quenching at room temperature,and grinding.Our comprehensive study reports relevant electrochemical data,advanced X-ray computed tomography(CT)imaging of the positive and negative electrodes,and a thorough structural and morphological characterization of the S:Au 97:3 w/w composite.This cathode exhibits high rate capability within the range from C/10 to 1C,a maximum capacity above 1300 mAh gs-1,and capacity retention between 85%and 91%after 100 cycles at 1C and C/3 rates.The novel formulation enables a sulfur fraction in the composite cathode film as high as 78 wt%,an active material loading of 5.7 mg cm-2,and an electrolyte/sulfur(E/S)ratio of 5μL mg-1,which lead to a maximum areal capacity of 5.4 mAh cm-2.X-ray CT at the micro-and nanoscale reveals the microstructural features of the positive electrode that favor fast conversion kinetics in the battery.Quantitative analysis of sulfur distribution in the porous cathode displays that electrodeposition during the initial cycle may trigger an activation process in the cell leading to improved performance.Furthermore,the tomography study reveals the characteristics of the lithium anode and the cell separator upon a galvanostatic test prolonged over 300 cycles at a 2C rate.  相似文献   

15.
Lithium–sulfur(Li–S)battery as a high-energy density electrochemical energy storage system has attracted many researchers’attention.However,the shuttle effect of Li–S batteries and the challenges associated with lithium metal anode caused poor cycle performance.In this work,the organosulfide poly(sulfur-1,3-diisopropenylbenzene)(PSD)was prepared as cathode material and additive of P(VDFHFP)polymer electrolyte(P(VDF-HFP)).It was verified that P(VDF-HFP)polymer electrolyte with 10%PSD(P(VDF-HFP)-10%PSD)showed a higher ionic conductivities than that of liquid electrolyte up to2.27×10-3 S cm-1 at room temperature.The quasi-solid-state Li-S batteries fabricated with organosulfide cathode material PSD and P(VDF-HFP)based functional polymer electrolyte delivered good cycling stability(780 m Ah g-1 after 200 th cycle at 0.1 C)and rate performance(613 m Ah g-1 at 1 C).The good cycling performance could be attributed to the synergistic effect of components,including the interaction between polysulfides and polymer main chain in the organosulfide cathode,the sustained organic/inorganic hybrid stable SEI layer formed by polymer electrolyte additive PSD,the improved cathode/electrolyte interface and the good affinity between P(VDF-HFP)based functional polymer electrolyte and Li metal surface.This strategy herein may provide a new route to fabricate high-performance Li–S batteries through the organosulfide cathode and functional polymer electrolyte.  相似文献   

16.
Perovskite oxide Ba0.5Sr0.5Fe0.9Nb0.1O3-δ(BSFN) as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells(IT-SOFCs) on the Ce0.5Sm0.2O1.9(SDC) and La0.9Sr0.1Ga0.8Mg0.23O3-δ(LSGM) electrolytes was prepared and investigated. The single phase BSFN oxide with a cubic perovskite structure and relatively high elec- trical conductivities was obtained after sintering at 1250℃ for 10 h in air. The BSFN cathode exhibited excellent chemical stability on the SDC and LSGM electrolytes at temperatures below 950 ℃. The area specific resistance of the BSFN cathode on the SDC and LSGM electrolytes were 0.024 and 0.021 Ω·cm2 at 800℃, respectively. The maximum power densities of the single cell with BSFN cathode in 300 μm-thick SDC and LSGM electrolytes achieved 414 and 516 mW/cm2 at 800℃, respectively. These results show that the BSFN material is a promising co- bait-free cathode candidate to be used in IT-SOFCs. A combination of the BSFN cathode and LSGM electrolyte is preferred owing to its excellent electrochemical performance.  相似文献   

17.
SAR-1 is a new germplasm which was discovered in the breeding material of southern multiplication in spring, 1988. The material showing high sterility of pollens is able to set seeds spontaneously. Under isolation, the seed-setting highest rate may reach 55.33%. The florets emasculated by clipping spikelet and lukewarm water still set seeds at certain rates. The completely sterile florets, after being emasculated and checked under microscope one by one, still set seeds, and the highest setting rate is 41.80%. Cytoembryological research indicates that the egg of SAR-1, without fertilization, divides independently into an embryo, which follows the normal process to maturity. Adventitious embryos originate from ovary wall cells. Therefore, it is deduced that SAR-1 has multiple mechanisms of apomixis, and the unfertilized polar nuclei fuse and develop into endosperm cells. The endosperm provids the embryo with nutrient for development. The automatic formation of the endosperm is an obvious feature of SAR-1.  相似文献   

18.
High-energy and safe lithium ion batteries(LIBs)are in increasing need as the rapid development of electronic devices,electric vehicles,as well as energy storage station.Li-rich oxides have attracted a lot of attention due to their high capacity and low cost as cathode material for LIBs.However,they still suffer from the vulnerable cathode/electrolyte interface,which presents the huge challenges of surface degradation and gas release,particularly at high state of charge.Some issues of Li-rich cathode materials,such as moderate cycle stability and voltage decay,are in tight connection with electrode-electrolyte interfacial side reactions.Research in the area of interfacial degradation mechanism and optimization strategies is of great significance as for Li-rich cathode,and extensive efforts have been poured.This review aims to understand the degradation mechanism of Li-rich cathode materials,and summarize the corresponding valuable and effective optimization strategies.Based on these considerations,we also have discussed the remaining challenges and the future research direction.  相似文献   

19.
The property of the material is closely related to its chemical compositions and microstruc-tures, which are the important parameters in the judgement of the quality of the material. The conventional chemical composition content of the material is an average value of the chemical composition of the whole material tested or the content of a fix position. Although it is still neces-sary to further improve these conventional methods, there are mature and systematic methods for analyzing the conve…  相似文献   

20.
Nickel-rich LiNi0.8Co0.1Mn0.1O2(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promising cathode materials for the next generation of high-energy-density solid-state lithium batteries.However,serious electro-chemo-mechanical degradation of Nickel-rich cathode during cycling,especially at a high voltage(over 4.5 V),constrains their la...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号