首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.  相似文献   

2.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming dipolar liquid butyronitrile near its glass transition temperature T(g)=95 K. The Stokes shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical linewidth changes along the solvation coordinate in a nonmonotonic fashion. These features are characteristic of solvation in viscous solvents and clearly indicate heterogeneous dynamics, i.e., spatially distinct solvent response times. Using the dielectric relaxation data of viscous butyronitrile as input, a microscopic model of dipolar solvation captures the relaxation time, the relaxation dispersion, and the amplitude of the dynamical Stokes shift remarkably well.  相似文献   

3.
We propose a dynamic structure of coupled dynamic molecular strings for supercooled small polar molecule liquids and accordingly we obtain the Hamiltonian of the rotational degrees of freedom of the system. From the Hamiltonian, the strongly correlated supercooled polar liquid state is renormalized to a normal superdipole liquid state. This scenario describes the following main features of the primary or alpha-relaxation dynamics in supercooled polar liquids: (1) the average relaxation time evolves from a high temperature Arrhenius to a low temperature non-Arrhenius or super-Arrhenius behavior; (2) the relaxation function crosses over from the high temperature exponential to low temperature nonexponential form; and (3) the temperature dependence of the relaxation strength shows non-Curie features. According to the present model, the crossover phenomena of the first two characteristics arise from the transition between the superdipole gas and the superdipole liquid. The model predictions are quantitatively compared with the experimental results of glycerol, a typical glass former.  相似文献   

4.
《Liquid crystals》1999,26(11):1587-1590
Dielectric spectroscopy is a very useful method for investigation of the structure and dynamics of liquid crystals. However, with few exceptions, most investigations have been only in the linear regime. In this note we present a simple method for extraction of the non-linear contributions to the dielectric constant and as an example give the results obtained for a ferroelectric liquid crystal.  相似文献   

5.
Supercooled o-terphenyl has been the subject of many investigations including dielectric relaxation spectroscopy. Due to the low dielectric strength and the tendency to crystallize at elevated temperatures, a detailed shape analysis of the loss profile from the glass transition temperature Tg to approximately 1.2 Tg is not available for the neat glass former. Assessing the origin of the different temperature dependencies of translational and rotational motions in supercooled liquids and its possible connection to heterogeneity requires this knowledge regarding the possible changes in the relaxation-time distribution across the 100 s-100 ns relaxation-time range. This note provides this information for o-terphenyl on the basis of a master curve representation: time-temperature superposition applies with a constant stretching exponent of beta=0.5 in the range of interest.  相似文献   

6.
Abstract

The temperature and frequency dependences of the complex dielectric susceptibility of a ferroelectric liquid crystal near the smectic C*-smectic A phase transition have been calculated using the classical and generalized Landau models. It is shown that although the dielectric response of the S*C phase consists generally of four modes (soft, Goldstone, and two high frequency polarization modes) only three bands appear in the dielectric loss spectrum of ferroelectric liquid crystals at the SA–S*C phase transition. These results are in agreement with recent experimental data.  相似文献   

7.
Dielectric relaxation measurements as a function of temperature, and of concentration in a non-coordinating solvent, the first reported for an ionic liquid, indicate a crossover in the relaxation mechanism due to varying levels of ion aggregation and the interplay of formation kinetics and relaxation dynamics of associates.  相似文献   

8.
9.
The retention of most compounds in RPLC proceeds through a combination of several independent mechanisms. We review a series of recent studies made on the behavior of several commercial C18-bonded stationary phases and of the complex, mixed retention mechanisms that were observed in RPLC. These studies are essentially based on the acquisition of adsorption isotherm data, on the modeling, and on the interpretation of these data. Because linear chromatography deals only with the initial slope of the global, overall, or apparent isotherm, it is unable fully to describe the complete adsorption mechanism. It cannot even afford clues as to the existence of several overlaid retention mechanisms. More specifically, it cannot account for the consequences of the surface heterogeneity of the packing material. The acquisition of equilibrium data in a wide concentration range is required for this purpose. Frontal analysis (FA) of selected probes gives data that can be modeled into equilibrium isotherms of these probes and that can also be used to calculate their adsorption or affinity energy distribution (AED). The combination of these data, the detailed study of the best constants of the isotherm model, the determination of the influence of experimental parameters (e.g., buffer pH and pI, temperature) on the isotherm constants provide important clues regarding the heterogeneity of the adsorbent surface and the main properties of the adsorption mechanisms. The comparison of similar data obtained for the adsorption of neutral and ionizable compounds, treated with the same approach, and the investigation of the influence on the thermodynamics of phase equilibrium of the experimental conditions (temperature, average pressure, mobile phase composition, nature of the organic modifier, and, for ionizable compounds, of the ionic strength, the nature, the concentration of the buffer, and its pH) brings further information. This review provides original conclusions regarding retention mechanisms in RPLC.  相似文献   

10.
The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ~500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II, for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.  相似文献   

11.
The box model, originally introduced to account for the nonresonant hole burning (NHB) dielectric experiments in supercooled liquids, is compared to the measurements of the third harmonics P(3) of the polarisation, reported recently in glycerol, close to the glass transition temperature T(g) [C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L'H?te, G. Biroli, and J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)]. In this model, each box is a distinct dynamical relaxing entity (hereafter called dynamical heterogeneity (DH)) which follows a Debye dynamics with its own relaxation time τ(dh). When it is submitted to a strong electric field, the model posits that a temperature increase δT(dh), depending on τ(dh), arises due to the dissipation of the electrical power. Each DH has thus its own temperature increase, on top of the temperature increase of the phonon bath δT(ph). Contrary to the "fast" hole burning experiments where δT(ph) is usually neglected, the P(3) measurements are, from a thermal point of view, fully in a stationary regime, which means that δT(ph) can no longer be neglected a priori. This is why the version of the box model that we study here takes δT(ph) into account, which implies that the δT(dh) of the DHs are all coupled together. The value of P(3), including both the "intrinsic" contribution of each DH as well as the "spurious" one coming from δT(ph), is computed within this box model and compared to the P(3) measurements for glycerol, in the same range of frequencies and temperatures T. Qualitatively, we find that this version of the box model shares with experiments some nontrivial features, e.g., the existence of a peak at finite frequency in the modulus of P(3) as well as its order of magnitude. Quantitatively, however, some experimental features are not accounted for by this model. We show that these differences between the model and the experiments do not come from δT(ph) but from the "intrinsic" contribution of the DHs. Finally, we show that the interferences between the 3ω response of the various DHs are the most important issue leading to the discrepancies between the box model prediction and the experiments. We argue that this could explain why the box model is quite successful to account for some kinds of nonlinear experiments (such as NHB) performed close to T(g), even if it does not completely account for all of them (such as the P(3) measurements). This conclusion is supported by an analytical argument which helps understanding how a "space-free" model as the box model is able to account for some of the experimental nonlinear features.  相似文献   

12.
The influence of microwave (MW) irradiation on the mass transfer kinetics in reversed-phase liquid chromatography (RPLC) was studied by placing a column in a microwave oven and measuring the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase compositions. The microwave energy dissipated in the column was set between 15 and 200 W and the mobile phase composition used varied from 100 to 70, 50, and 10% methanol in water at 1.2 mL/min. At all the mobile phase compositions considered, the effluent temperature increased with increasing microwave energy. At 70% methanol, the mobile phase flow rate was set at 1.2, 2.0, and 2.8 mL/min. At 1.2 mL/min, the effluent temperatures at the lowest (15 W) and highest (200 W) microwave energy inputs were 25 +/- 1 degrees C and 41 +/- 1 degrees C for pure methanol, 25 +/- 1 degrees C and 48 +/- 1 degrees C for 70% methanol, 25 +/- 1 degrees C and 50 +/- 1 degrees C for 50% methanol, and, 25 +/- 1 degrees C and 52 +/- 1 degrees C for 10% methanol, respectively. With 70% methanol and microwave energy inputs of 15, 30, and 50 W, the effluent temperature did not change with increasing flow rate; a considerable change was observed at 100, 150, and 200 W between 1.2 and 2.0 mL/min and none between 2.0 and 2.8 mL/min. Chromatographic elution band profiles of propylbenzene were recorded under linear conditions, in 70% methanol solutions, for microwave energy inputs of 0, 15 and 30 W, at constant temperature. The intraparticle diffusion coefficient, De, under microwave irradiation was ca. 20% higher than without irradiation. These preliminary results suggest that microwave irradiation may have a considerable influence on intraparticle diffusion in RPLC.  相似文献   

13.
We model the solidification and subsequent cooling of a supercooled liquid droplet that is lying on a cold solid substrate after impact. It is assumed that solidification occurs for a given fixed droplet shape. The shapes used by the model are a sphere, truncated spheres, and an experimentally registered droplet shape. The freezing process is conduction-dominant and is modeled as a one-phase Stefan problem. This moving boundary problem is reformulated with the enthalpy method and then solved numerically with an implicit finite-difference technique. The numerical results for the simple case of a spherical droplet touching a surface are similar to those of a freely freezing spherical droplet and are well confirmed by the 1D asymptotic analytical model of Feuillebois et al. (J. Colloid Interface Sci. 169 (1995) 90). A freezing water droplet is considered as an example. The numerical results for full freezing time, subsequent cooling time, and last freezing point coordinate for the various droplets shapes are fitted by analytical functions depending on supercooling, thermal resistance of the target surface (expressed by Biot number), and spreading parameter. These functions are proposed for direct application, thus avoiding the need to solve the full freezing and cooling problem.  相似文献   

14.
The non-linear dielectric effect (NLDE), that is the increase in the dielectric constant divided by the square of the applied field, is measured for a number of non-polar molecular liquids and for liquid xenon. The values of the NLDE are compared with results in the literature and with values predicted by theory. The agreement with other experiments is quite good, but with theory is very poor, the only exception being Liquid xenon, where agreement is good. A possible explanation is given. The prediction that the NLDE should increase strongly near the critical point due to the divergence of the isothermal compressibility could not be established by experiment. The conclusion is drawn that this failure is due to the reduction by the theory of second-order effects to first-order thermodynamic and molecular properties.  相似文献   

15.
The relation between solvent polarity expressed through the Dimroth-Reichardt spectroscopic parameter E T (30) and the nonlinear dielectric effect (NDE) expressed through the parameter /E2 is demonstrated where is a change in the electric permittivity of a solvent in an external strong electric field E. Both E T (20) and /E2, determined in quite different ways, are extremely sensitive to the dielectric properties of a solvent which depend on molecular interactions. Linear correlations between /E2 and E T (30) have been found for n-alkanols representing hydrogenbond donor solvents, and for halogenobenzenes which are dipolar, aprotic, weakly-associated solvents.Part of this work was presented at The 22nd International Conference on Solution Chemistry in Linz, Austria, July 1991.  相似文献   

16.
A diffusion equation for the distribution of ionic impurities in a polymer under a dc field has been solved analytically for the conditions that neither injection nor absorption of impurity ions takes place at either electrode and that the ions do not interact. By using the solution of the diffusion equation, an ionic contribution to the complex dielectric constant is calculated. The most important results are as follows. (1) At high temperatures and low frequencies, the dielectric loss factor of the polymer decreases exponentially with the time elapsed after the application of the dc bias. (2) The dielectric constant is not greatly affected by the bias. (3) The ionic contribution to the loss factor in the absence of the dc bias is represented as ?i = 4πνDq2kT, where ν is the density of mobile ions, D the diffusion coefficient, q the charge of an ion, ω the angular frequency, k the Boltzmann constant, and T the absolute temperature. (4) A method is presented for distinguishing between the apparent activation energy for diffusion and that for generation of mobile ions.  相似文献   

17.
The characteristic dielectric behaviour of ferroelectric liquid crystals with a large spontaneous polarization has been studied as functions of the D.C. bias field, frequency, cell thickness and applied pressure. Under the condition in which the contribution of the Goldstone mode is suppressed, a sharp peak in the temperature dependence of the dielectric constant is clearly observed at the transition between SA and S*C phases T S C *s A. The relaxation of the soft mode is observed both in the SA and S*C phases by eliminating the contribution of the Goldstone mode under a D.C. bias field. Another relaxation is also observed in the S*C phase around several kHz in addition to that of the soft mode and the Goldstone mode. The pressure effect on the soft mode was also studied.  相似文献   

18.
The characteristic dielectric behaviour of ferroelectric liquid crystals with a large spontaneous polarization has been studied as functions of the D.C. bias field, frequency, cell thickness and applied pressure. Under the condition in which the contribution of the Goldstone mode is suppressed, a sharp peak in the temperature dependence of the dielectric constant is clearly observed at the transition between SA and S*C phases TSC*sA. The relaxation of the soft mode is observed both in the SA and S*C phases by eliminating the contribution of the Goldstone mode under a D.C. bias field. Another relaxation is also observed in the S*C phase around several kHz in addition to that of the soft mode and the Goldstone mode. The pressure effect on the soft mode was also studied.  相似文献   

19.
In the present study, we performed molecular dynamics simulations and investigated dynamical heterogeneity in a supercooled liquid under a steady shear flow. Dynamical heterogeneity can be characterized by three quantities: the correlation length ξ(4)(t), the intensity χ(4)(t), and the lifetime τ(hetero)(t). We quantified all three quantities by means of the correlation functions of the particle dynamics, i.e., the four-point correlation functions, which are extended to the sheared condition. Here, to define the local dynamics, we used two time intervals t = τ(α) and τ(ngp); τ(α) is the α-relaxation time, and τ(ngp) is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. We discovered that all three quantities (ξ(4)(t), χ(4)(t), and τ(hetero)(t)) decrease as the shear rate γ of the steady shear flow increases. For the time interval t = τ(α), the scalings ξ(4)(τ(α))~γ(-0.08), χ(4)(τ(α))~γ(-0.26), and τ(hetero)(τ(α))~γ(-0.88) were obtained. The steady shear flow suppresses the heterogeneous structure as well as the lifetime of the dynamical heterogeneity. In addition, we demonstrated that all three quantities in the sheared non-equilibrium state can be mapped onto those in the equilibrium state through the α-relaxation time τ(α). This finding means that the same relation between τ(α) and three quantities holds in both the equilibrium state and the sheared non-equilibrium state and therefore proposes that the dynamical heterogeneity can play a similar role in the drastic change of τ(α) due to not only the temperature but also the shear rate.  相似文献   

20.
Local structural models for supercooled liquid transition metals (Ti, Ni, and Zr) are proposed based on a reverse Monte Carlo analysis of high-energy x-ray diffraction data taken from the electrostatically levitated liquids. The resulting structures are characterized by their bond angle distributions, Honeycutt and Andersen indices [J. Phys. Chem. 91, 4950 (1987)], and bond orientational order parameters. All analyses suggest that an icosahedral short-range order is present in these supercooled liquids, but it is distorted in liquid Ti. These results are in agreement with the observed evolution of the high-q shoulder on the second peak in the structure factor S(q) and with an earlier analysis based on a local cluster model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号