首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems.  相似文献   

2.
An analytical anharmonic six-dimensional three-sheeted potential energy surface for the ground and first excited states of the ammonia cation has been developed which is tailored to model the ultrafast photoinduced dynamics. Selected ab initio cuts, obtained by multireference configuration interaction calculations, have been used to determine the parameters of a diabatic representation for this Jahn-Teller and pseudo-Jahn-Teller system. The model includes higher-order coupling terms both for the Jahn-Teller and for the pseudo-Jahn-Teller matrix elements. The relaxation to the ground state is possible via dynamical pseudo-Jahn-Teller couplings involving the asymmetric bending and stretching coordinates. The photoelectron spectrum of NH3 and the internal conversion dynamics of NH3+ have been determined by wave packet propagation calculations employing the multiconfigurational time-dependent Hartree method. Three different time scales are found in the dynamics calculations for the second absorption band. The ultrafast Jahn-Teller dynamics of the two excited states occurs on a 5 fs time scale. The major part of the internal conversion to the ground state takes place within a short time scale of 20 fs. This fast internal conversion is, however, incomplete and the remaining excited state population does not decay completely even within 100 fs.  相似文献   

3.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

4.
利用时间分辨飞秒光电子影像技术结合时间分辨质谱技术, 研究了氯苯分子第一激发态的超快过程. 266.7 nm单光子将氯苯分子激发至第一激发态. 母体离子时间变化曲线包括了不同的双指数曲线. 一个是时间常数为(152±3) fs的快速组分, 另一个是时间常数为(749±21) ps的慢速组分. 通过时间分辨的光电子影像得到了时间分辨的光电子动能分布和角度分布. 时间常数为(152±3) fs的快速组分反映了第一激发态内部的能量转移过程, 这个过程归属为氯苯分子第一激发态耗散型振动驰豫过程. 时间常数为(749±21) ps的慢速组分反映了第一激发态的慢速内转换过程. 另外, 实验实时观察到典型的非对称陀螺分子(氯苯)激发态的非绝热准直和转动退相干现象. 并推算出第一次转动恢复时间为205.8 ps (C类型)和359.3 ps (J类型).  相似文献   

5.
结合时间分辨的飞秒光电子影像(TRPEI)技术和时间分辨的质谱技术,研究了氯化苄(BzCl)分子内转换动力学过程.从光电子影像中获得了光电子动能分布和角度分布.氯化苄分子吸收两个400nm的光子后从基态跃迁到S4态和S2态.获得的母体离子随泵浦-探测时间延迟变化的曲线可以用两个指数函数进行拟合,包括一个时间常数为50fs的快速组分和一个时间常数为910fs的慢速组分.通过分析光电子动能分布随延迟时间的变化,我们认为分子被激发到S4态后在很短的时间内与S2态发生耦合迅速弛豫到S2态,然后再经内转换(IC)弛豫到S1态.最初布居的激发态分子经过内转换弛豫到S1态的时间尺度为50fs.910fs的慢速时间组分反映了分子弛豫到S1态后,经内转换向基态S0的弛豫.光电子角度分布的各向异性参数从零时刻的0.87增加到25fs时的0.94,然后逐渐减小到190fs时刻的0.59的现象,也反映了氯化苄分子从S4态耦合到S2态,然后内转换到S1态的动力学过程.  相似文献   

6.
Nonradiative decay of the photoexcited RNA base uracil has been studied in fully explicit aqueous solution using nonadiabatic ab initio molecular dynamics. Detailed comparison of the time-dependent nonadiabatic transition probability with specific molecular vibrational motions provides insight into the mechanism of the ultrafast internal conversion. From a monoexponential fit to the excited state ensemble population, the lifetime of the first electronically excited ππ* singlet state has been determined to be 359 fs. Additional, reference, nonadiabatic simulations have been carried out in the gas phase, pinpointing the effects of the solvent on the photophysics of uracil. The gas phase excited state lifetime is calculated to be 608 fs, somewhat longer than in solution. In terms of excitation energies and geometrical parameters, the differences between gas phase and aqueous solution are found to be generally small. A notable exception is the excited state out-of-plane torsional motion about the CC double bond, which appears severely damped by the solvent. Moreover, hydrogen bond interactions between the uracil oxygens and the solvent hydrogens are seen to enhance internal conversion.  相似文献   

7.
Phenol blue (PB) is a primary skeletal structure part of indoaniline dyes and well-known as a solvatochromic dye. It has been recently observed by pump-probe (PP) transient absorption measurements that PB shows ultrafast ground state recovery within a few hundred femtoseconds after photoexcitation. In this work, the ultrafast photochemical reaction mechanism of PB has been investigated using direct ab initio (CASSCF) nonadiabatic molecular dynamics with the trajectory surface hopping (TSH) method. The swarm of trajectories starting from the S1 Franck-Condon (FC) point has mostly shown surface hops (nonadiabatic transitions) from the S1 state to the S0 state at 110-120 fs in the vicinity of an S1/S0 conical intersection and after decay to the S0 state bifurcated into two (Reverse and Forward) directions with almost the same branching ratio and reached the vicinity of the S0 minimum energy point at 200-300 fs, which is in good agreement with the fast time component of the ground state recovery in the PP measurements. After reaching the vicinity of the S0 minimum energy point, the trajectories showed a coherent vibration of bending motion between quinoneimine and aniline rings with a low frequency of 43 cm-1, which presumably corresponds to a coherently photoexcitation-induced vibrational mode with a low frequency recently observed by the PP measurements.  相似文献   

8.
We present a theoretical approach for the ultrafast nonadiabatic dynamics based on the ab initio molecular dynamics carried out "on the fly" in the framework of the configuration interaction method combined with Tully's surface hopping algorithm for nonadiabatic transitions. This approach combined with our Wigner distribution approach allows us to perform accurate simulations of femtosecond pump-probe spectra in the systems where radiationless transitions among electronic states take place. In this paper we illustrate this by theoretical simulation of ultrafast processes and nonradiative relaxation in the Na(3)F cluster, involving three excited states and the ground electronic state. Furthermore, we show that our accurate simulation of the photoionization pump-probe spectrum is in full agreement with the experimental signal. Based on the nonadiabatic dynamics at high level of accuracy and taking into account all degrees of freedom, the nonradiative lifetime for the 1 (1)B(1) excited state of Na(3)F has been determined to be approximately 900 fs.  相似文献   

9.
The excited-state dynamics of an oligomer of polydiacetylene, 2,2,17,17-tetramethyloctadeca-5,9,13-trien-3,7,11,15-tetrayne, dissolved in n-hexane have been studied by femtosecond fluorescence upconversion and polarized transient absorption experiments under one- and two-photon excitation conditions. Spectroscopically monitoring the population relaxation in the excited states in real time results in a distinct time separation of the dynamics. It has been concluded that the observed dynamics can be fully accounted for on the basis of the two lower excited states of the target molecule. The S1 (2(1)Ag) state, which cannot be excited from the ground state with one-photon absorption, is verified to be populated via internal conversion in 200+/-40 fs from the strong dipole-allowed S2 (1(1)Bu) state. The population in the "hot" S1 state subsequently cools with a time constant of 6+/-1 ps and decays back to the ground state with a lifetime of 790+/-12 ps.  相似文献   

10.
11.
We present femtosecond time-resolved photoelectron spectra of adenine in a molecular beam, recorded at pump wavelengths of 250, 267, and 277 nm. This leads to initial excitation of the bright S2(pipi*). Close to the band origin (277 nm), the lifetime is several picoseconds. Higher vibronic levels (267 and 250 nm excitation) show much shorter lifetimes of t < 50 fs, and we observe strong coupling between S2(pipi*) and S1(npi*). Rapid internal conversion (t < 50 fs) populates the lower lying S1(npi*) state which has a lifetime of 750 fs. At 267 nm, we found evidence for an additional channel which is consistent with the dissociative S3(pisigma*) state, previously proposed as an ultrafast relaxation pathway from S2(pipi*).  相似文献   

12.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

13.
利用飞秒时间分辨的光电子影像技术结合时间分辨的质谱技术,研究了3-甲基吡啶分子激发态的超快过程. 实时观察到了3-甲基吡啶分子S2态向S1态高振动能级的超快内转换过程,该内转换的时间大约为910fs. 二次布居的S1态主要通过内转换衰减到基态S0,该内转换的时间尺度为2.77 ps. 光电子能谱分布和光电子角分布显示,S2态和S1态在电离的过程中跟3p里德堡态发生偶然共振. 本次实验中还用400 nm两个光子吸收的方法布居了3-甲基吡啶的3s 里德堡态. 研究表明,3s 里德堡态的寿命为62 fs,并主要通过内转换快速衰减到基态.  相似文献   

14.
A hybrid of a time-of-flight mass spectrometer and a time-of-flight "magnetic-bottle type" photoelectron (PE) spectrometer is used for fs pump-probe investigations of the excited state dynamics of thiophene. A resonant two-photon ionization spectrum of the onset of the excited states has been recorded with a tunable UV laser of 190 fs pulse width. With the pump laser set to the first intense transition we find by UV probe ionization first a small time shift of the maxima in the PE spectrum and then a fast decay to a low constant intensity level. The fitted time constants are 80+/-10 fs, and 25+/-10 fs, respectively. Theoretical calculations show that upon geometry relaxation the electronic state order changes and conical intersections between excited states exist. We use the vertical state order S1, S2, S3 to define the terms S1, S2, and S3 for the characterization of the electron configuration of these states. On the basis of our theoretical result we discuss the electronic state order in the UV spectra and identify in the photoelectron spectrum the origin of the first cation excited state D1. The fast excited state dynamics agrees best with a vibrational dynamics in the photo-excited S1 (80+/-10 fs) and an ultrafast decay via a conical intersection, presumably a ring opening to the S3 state (25+/-10 fs). The subsequently observed weak constant signal is taken as an indication, that in the gas phase the ring-closure to S0 is slower than 50 ps. An ultrafast equilibrium between S1 and S2 before ring opening is not supported by our data.  相似文献   

15.
利用飞秒泵浦-探测技术结合飞行时间质谱(TOF-MS),研究了丙烯酸分子被200nm泵浦光激发到第二电子激发态(S2)后的超快预解离动力学.采集了母体离子和碎片离子的时间分辨质谱信号,并利用动力学方程对时间分辨离子质谱信号进行拟合和分析,揭示了预解离通道的存在.布居在S2激发态的分子通过快速的内转换弛豫到第一电子激发态(S1),时间常数为210fs,随后再经内转换从S1态弛豫到基态(S0)的高振动态,时间常数为1.49ps.分子最终在基态高振动态势能面上发生C-C键和C-O键的断裂,分别解离生成H2C=CH和HOCO、H2C=CHCO和OH中性碎片,对应的预解离时间常数分别约为4和3ps.碎片离子的产生有两个途径,分别来自于母体离子的解离和基态高振动态势能面上中性碎片的电离.  相似文献   

16.
利用时间分辨的飞秒光电子影像技术结合时间分辨的质谱技术, 研究了2-氯吡啶分子激发态的超快过程. 实时观察到了2-氯吡啶分子第二激发态(S2)向第一激发态(S1)高振动能级的的超快内转换过程,该内转换的时间常数为(162±5)fs. 实验结果表明, 通过S2/S0的锥形交叉衰减到基态的衰减通道也是退布居的重要通道, 其时间尺度为(5.5±0.3) ps.  相似文献   

17.
We consider the control of internal conversion between the S(2)((1)B(2u)) excited electronic state of pyrazine and the S(1)((1)B(3u)) state. The study is performed both during and after the femtosecond excitation of the ground electronic state S(0)((1)A(g)) to form the S(2) state. The dynamics is examined using the newly developed "effective modes" technique which enables the full computation of quantum dynamics in multi-dimensional spaces. Using this technique, we also investigate the coherent control of population transfer from S(0) to the S(2) and S(1) electronic states. We find that the use of shaped laser pulses enables a significant delay of the internal conversion. For example, after 60 fs, the S(2) population amounts to ~60% of the initial S(0) population, and remains at ~20% after 100 fs, in contrast to the S(0) electronic state which is completely depopulated within 75 fs.  相似文献   

18.
Excited-state dynamics of 2-methyl furan has been studied by femtosecond time-resolved photoelectron imaging. The molecule 2-methyl furan was simultaneously excited to the n=3 Rydberg series of S1[1A"(π3s)], 1A'(π3px), 1A"(π3py) and 1A"(π3pz) and the valence state of 1A'(ππ*) by two 400 nm photons and subsequently probed by two 800 nm photons. The average lifetime of the Rydberg series and the valence state was measured to be on the time scale of 50 fs by the time-dependent ion yield of the parent ion. Ultrafast internal conversions among these excited states were observed and extracted from the time-dependences of the photoelectron kinetic energy components of these excited states in the photoelectron kinetic energy spectra. Furthermore, it is identified that the 1A'(ππ*) state might play an important role in internal conversions among these excited states. The Rydberg-valence mixings, which result in numerous conical intersections, act as the driving force to accomplish such ultrafast internal conversions.  相似文献   

19.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   

20.
The multiphoton multichannel photodynamics of NO(2) has been studied using femtosecond time-resolved coincidence imaging. A novel photoelectron-photoion coincidence imaging machine was developed at the laboratory in Amsterdam employing velocity map imaging and "slow" charged particle extraction using additional electron and ion optics. The NO(2) photodynamics was studied using a two color pump-probe scheme with femtosecond pulses at 400 and 266 nm. The multiphoton excitation produces both NO(2) (+) parent ions and NO(+) fragment ions. Here we mainly present the time dependent photoelectron images in coincidence with NO(2) (+) or NO(+) and the (NO(+),e) photoelectron versus fragment ion kinetic energy correlations. The coincidence photoelectron spectra and the correlated energy distributions make it possible to assign the different dissociation pathways involved. Nonadiabatic dynamics between the ground state and the A (2)B(2) state after absorption of a 400 nm photon is reflected in the transient photoelectron spectrum of the NO(2) (+) parent ion. Furthermore, Rydberg states are believed to be used as "stepping" states responsible for the rather narrow and well-separated photoelectron spectra in the NO(2) (+) parent ion. Slow statistical and fast direct fragmentation of NO(2) (+) after prompt photoelectron ejection is observed leading to formation of NO(+)+O. Fragmentation from both the ground state and the electronically excited a (3)B(2) and b (3)A(2) states of NO(2) (+) is observed. At short pump probe delay times, the dominant multiphoton pathway for NO(+) formation is a 3x400 nm+1x266 nm excitation. At long delay times (>500 fs) two multiphoton pathways are observed. The dominant pathway is a 1x400 nm+2x266 nm photon excitation giving rise to very slow electrons and ions. A second pathway is a 3x400 nm photon absorption to NO(2) Rydberg states followed by dissociation toward neutral electronically and vibrationally excited NO(A (2)Sigma,v=1) fragments, ionized by one 266 nm photon absorption. As is shown in the present study, even though the pump-probe transients are rather featureless the photoelectron-photoion coincidence images show a complex time varying dynamics in NO(2). We present the potential of our novel coincidence imaging machine to unravel in unprecedented detail the various competing pathways in femtosecond time-resolved multichannel multiphoton dynamics of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号