首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

2.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

3.
Using a range of complementary experiments, a detailed investigation into the behavior of dodecane-water emulsions stabilized by a mixture of silica nanoparticles and pure cationic surfactant has been made. Both emulsifiers prefer to stabilize o/w emulsions. At high pH, particles are ineffective emulsifiers, whereas surfactant-stabilized emulsions become increasingly stable to coalescence with concentration. In mixtures, no emulsion phase inversion occurs although synergism between the emulsifiers leads to enhanced stability at either fixed surfactant concentration or fixed particle concentration. Emulsions are most stable under conditions where particles have negligible charge and are most flocculated. Freeze fracture scanning electron microscopy confirms the presence of particle flocs at drop interfaces. At low pH, particles and surfactant are good emulsifiers alone. Synergism is also displayed in these mixtures, with the extent of creaming being minimum when particles are most flocculated. Experiments have been undertaken in order to offer an explanation for the latter synergy. By determining the adsorption isotherm of surfactant on particles in water, we show that surfactant addition initially leads to particle flocculation followed by re-dispersion. Using suitable contact angle measurements at oil-water-solid interfaces, we show that silica surfaces initially become increasingly hydrophobic upon surfactant addition, as well as surfactant adsorption lowering the oil-water interfacial tension. A competition exists between the influence of surfactant on the contact angle and the tension in the attachment energy of a particle to the interface.  相似文献   

4.
W/C emulsions were stabilized using hydrophobic silica particles adsorbed at the interface, resulting in average droplet diameters as low as 7.5 microm. A porous cross-linked shell was formed about a hydrophilic (colloidal and fumed) silica core with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethyoxysilane, to render the particles CO(2)-philic. The stability of emulsions comprising equal weights of CO(2) and water was assessed with visual observations of settling fronts and the degree of emulsion coalescence, and the average drop size was measured by optical microscopy. The effect of CO(2) density on both emulsion stability and droplet size was determined quantitatively. The major destabilizing mechanism of the emulsions was settling, whereas Ostwald ripening and coalescence were not visible at any density, even over 7 days. Flocculation of the settling droplets did not occur, although gelation of the emulsions through particle interactions resulted after longer periods of time. CO(2)-philic particles offer a new route to highly stable W/C emulsions, with particle energies of attachment on the order of 10(6)kT, even at CO(2) densities as low as 0.78 g ml(-1). At these low densities, surfactants rarely stabilize emulsions as the result of poor surfactant tail solvation.  相似文献   

5.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

6.
Acrylic polymer-silica hybrid emulsions were synthesized from both anionic and cationic polymer emulsions by simple post-addition of tetraethoxysilane as a silica precursor. Solvent resistance of the films from the hybrid emulsions and the zeta-potential of the hybrid emulsions suggested the different forms of silica components in each hybrid emulsion. Thermal gravimetric analysis, 29Si NMR measurements, and transmission electron microscope observations revealed that the hybrid emulsion from the anionic polymer emulsion was a mixture of anionic polymer particles and homogeneously dissolved silicate oligomer-polymer. On the contrary, the hybrid emulsion from cationic polymer emulsion consisted of polymer core-silica shell particles. The electrostatic interaction between the cationic polymer particle surface and the silicate would be responsible for the accumulation of the silicate onto the particle surface, leading to the silica shell layer formation. The sol-gel condensation reaction of silicate in the acidic emulsion phase was revealed to be controllable by the surface charge of the coexisting particles.  相似文献   

7.
研究了聚氧乙烯(PEO)与SiO2纳米颗粒对水/二甲苯体系Pickering乳液的协同稳定作用. 实验发现,PEO的存在减小了乳液液滴的平均直径,抑制了乳液的相反转,有效阻止了乳液的熟化,使乳液具有更好的稳定性. 进一步对纳米颗粒膜的流变性质进行研究,结果表明,PEO高分子促进了纳米颗粒形成更大尺寸的聚集结构,提高了其在界面上的吸附性,增强了颗粒膜的力学性能,在较小颗粒用量条件下使得Gibbs稳定性判据得到满足.  相似文献   

8.
Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).  相似文献   

9.
We investigated the phase inversion of Pickering emulsions stabilized by plate-shaped clay particles. Addition of water induced a phase inversion from a water-in-oil (W/O) emulsion to an oil-in-water (O/W) emulsion when the amount of the oil phase exceeded a limiting amount of oil absorption to solid particles. On the other hand, a phase inversion from a powdery state to an O/W emulsion state through an oil-separated state is observed when the amount of an oil phase is less than the limiting amount of the oil absorption. Interestingly, the oil separated is re-dispersed as emulsion droplets into the O/W emulsion phase. This type of phase inversion, which is a feature of the Pickering emulsions stabilized by the clay particles, is caused by a change in the aggregate structures of particles.  相似文献   

10.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

11.
The in situ surface activation of raw CaCO(3) nanoparticles by interaction with a series of sodium carboxylates of chain length between 6 and 12 as well as sodium 2-ethylhexylsulfosuccinate (AOT) was studied, and the impact of this on the stabilization and phase inversion of toluene-water emulsions was assessed. By using complementary experiments including measurement of particle zeta potentials, adsorption isotherms of amphiphile, and relevant contact angles, the mechanism of this activation was revealed. The results show that hydrophilic CaCO(3) nanoparticles can be surface activated by interaction with sodium carboxylates and AOT even if they are not surface-active themselves. Both the electrostatic interaction between the positive charges on particle surfaces and the negative charges of anionic amphiphile headgroups and the chain-chain interactions of the amphiphile result in monolayer adsorption of the amphiphile at the particle-water interface. This transforms the particles from hydrophilic to partially hydrophobic such that they become surface-active and stabilize oil-in-water O/W(1) emulsions and induce O/W(1) → water-in-oil W/O phase inversion, depending on the chain length of the carboxylate molecules. At high amphiphile concentration, bilayer or hemimicelle adsorption may occur at the particle-water surface, rendering particles hydrophilic again and causing their desorption from the oil-water interface. A second phase inversion, W/O → O/W(2), may occur depending on the surface activity of the amphiphile. CaCO(3) nanoparticles can therefore be made good stabilizers of both O/W and W/O emulsions once surface activated by mixing with traces of suitable anionic amphiphile.  相似文献   

12.
Doubly pH-responsive pickering emulsion   总被引:1,自引:0,他引:1  
A pH-responsive Pickering emulsion has been designed on the basis of commercially available alumina-coated silica nanoparticles (Ludox CL silica particles) and potassium hydrogen phthalate (KHP). KHP was found to bind to cationic particle surfaces at pH values between 3.5 and 5.5, enabling the resulting surface-active particles to stabilize emulsions of xylenes in water. Above and below this pH range, the system demulsifies, resulting in a reversible Pickering emulsifier having two pH-controlled, reversible transitions.  相似文献   

13.
The stabilization of emulsions by a mixture of oppositely charged nanoparticles is investigated in relation to their behavior in water before emulsification. No emulsion can be prepared using either negatively or positively charged silica particles alone because the particles are too hydrophilic. Certain mixtures of the two particle types lead to heteroaggregation and a lowering of the net charge. Such mixtures, of increased hydrophobicity as verified by contact angle measurements, are capable of forming stable oil-in-water emulsions of excellent coalescence stability. The increased viscosity of the continuous phase also contributes to such stability.  相似文献   

14.
The wettability of montmorillonite could be in situ modified by cationic surfactant cetyltrimethylammonium bromide (CTAB). The type and stability of emulsions prepared from montmorillonite with different concentrations of cationic surfactant were investigated, and a double phase inversion of emulsions was observed. The adsorption of CTAB on montmorillonite particles was studied by surface tension and zeta potential measurements, and the variation of the wettability of particles with the concentration of CTAB was characterized by the contact angle measurements. The adsorption of particles at the surface of emulsion droplets was observed by laser-induced confocal scanning microscopy. At low surfactant concentrations, the adsorption of CTAB on montmorillonite increased the hydrophobicity of the particles, and the stability of oil-in-water emulsions was enhanced. With the increase of the CTAB concentration, montmorillonite particles changed from hydrophilic to hydrophobic, and water-in-oil emulsions were obtained. However, at higher surfactant concentrations, the emulsions inverts to O/W again because montmorillonite particles were reconverted into hydrophilic due to the formation of CTAB bilayer on the surface of montmorillonite.  相似文献   

15.
Dielectric relaxation in binary mixtures containing particles or lamellae with complex geometry has been simulated within the quasielectrostatic approximation by a three-dimensional finite-difference method. The method was tested using simple models corresponding to water-in-oil (W/O) and oil-in-water (O/W) emulsions with volume fraction P up to 0.5. The dielectric spectra calculated by the finite difference method agreed with those expected from Wagner's equation at P < or =0.3 and approached those from Hanai's equation at P>0.4. This method was applied to more complicated binary mixtures of oil and water: a bicontinuous cubic structure, a suspension of particles with projections, and a planar bilayer with a rippled or interdigitated interface. The bicontinuous phase that is supposed to appear near the transition between W/O and O/W emulsions showed dielectric properties similar to those of the O/W emulsion. The undulation of the particle surface and the interface of the planar bilayer affected all parameters of dielectric relaxation, especially the relaxation intensity.  相似文献   

16.
Inorganic colloidal particles were usually used to stabilize the emulsions of small molecular compounds. In this paper, the stable aqueous emulsions of organosilicone resin were prepared by emulsification technique using colloidal nanosilica particles combined with very small amount of emulsifiers. The effects of the silica size and concentration on the rheological behavior of the emulsion were investigated by steady-state and transient rheological measurements and dynamic modulus measurement. It was found that all emulsions containing colloidal silica particles exhibited shear-thinning behavior. The smaller the colloidal silica size was or the more the silica content was, the greater the storage modulus was at low strain amplitude, indicating a stronger interparticle interaction and a solidlike viscoelastic behavior of the emulsion. This rheological behavior can be explained by the formation of the reversible particulate network in the emulsion.  相似文献   

17.
A liquid paraffin-water emulsion was investigated using layered double hydroxide (LDH) particles and sodium dodecyl sulfate (SDS) as emulsifiers. Both emulsifiers are well-known to stabilize oil-in-water (o/w) emulsions. Surprisingly, a double phase inversion of the emulsion containing LDH particles is induced by the adsorption of SDS. At a constant LDH concentration, the emulsion is o/w type when SDS concentrations are low. At intermediate SDS concentrations, the first emulsion inversion from o/w to w/o occurs, which is attributed to the enhanced hydrophobicity of LDH particles caused by the desorption of the second layer of surfactant, leaving a densely packed SDS monolayer on the LDH exterior surfaces. The second inversion from water-in-oil (w/o) to o/w occurs at higher SDS concentrations, which may be due to the competitive adsorption at the oil/water interfaces between the LDH particles modified by the SDS bilayers and the free SDS molecules in the bulk solution, but the free SDS molecules dominate and determine the emulsion type. Laser-induced fluorescent confocal micrographs clearly confirm the adsorption of LDH particles on the surfaces of the initial o/w and intermediate w/o emulsion droplets, whereas no LDH particles were adsorbed on the final o/w emulsion droplet surfaces. Also, transmission electron microscopy (TEM) observations indicate that the shape of the final o/w emulsions is similar to that of the monomeric SDS-stabilized emulsion but different from that of the initial o/w emulsions. The adsorption behavior of SDS on LDH particles in water was investigated to offer an explanation for the emulsion double phase inversion. The zeta potential results show that the particles will flocculate first and then redisperse following surfactant addition. Also, X-ray diffraction (XRD) measurements indicate that SDS adsorption on the LDH interior surfaces will be complete at intermediate concentrations.  相似文献   

18.
Acrylic polymer/silica organic–inorganic hybrid emulsions were synthesized by a simple method, that is, a conventional emulsion polymerization and subsequent sol–gel process, to provide water‐based coating materials. The acrylic polymer emulsions contained a silane coupling agent monomer, such as methacryloxypropyltriethoxysilane, to form highly solvent‐resistant hybrid films. On the other hand, the hybrid films from the surface‐modified polymer emulsions, in which the silane coupling agent was located only on the surface of the polymer particles and the particle core was not crosslinked, did not exhibit high solvent resistance. A honeycomblike array structure, which was derived from the polymer particles (diameter ≈ 50 nm) and the silica domain, on the hybrid film surfaces was observed by atomic force microscopy. The crosslinked core part and silane coupling agent containing the shell part of the polymer particles played important roles in attaining high solvent resistance. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4736–4742, 2006  相似文献   

19.
Previous work has identified distinct regions, on a phase inversion map, for dispersions of polyurethane ionomer (PUI) and water. In this study, events that occur, before, during, and after catastrophic phase inversion (provoked by adding water to polyurethane ionomer (PUI) in the RII regions of the phase inversion map) have been studied in order to characterise the inversion mechanism. Before phase inversion, initial water addition leads to the hydration of ionic groups and eventually water drops start to form in the hydrophobic portions of the polymer matrix. At the phase inversion point, the PUI-water interface restructures and the ionomer disintegrates into a dispersion of spherical particles enclosed by a continuous aqueous phase. It is suggested that pseudo-drop structures are formed simultaneously during the production of the small polymer-in-water drops. After phase inversion, water addition dilutes the emulsion and destroys the apparent ionic-centre-rich environment surrounding any isolated ionic groups on a particle surface. The larger water-in-polymer drops are likely to have participated in the phase inversion and the smaller water drops form the primary water drops in the multiple emulsions. The resultant emulsions are stable over a period of a few months but very few multiple drops remain after 1(1/4) years.  相似文献   

20.
Emulsions stabilized through the adsorption of colloidal particles at the liquid-liquid interface have long been used and investigated in a number of different applications. The interfacial adsorption of particles can be induced by adjusting the particle wetting behavior in the liquid media. Here, we report a new approach to prepare stable oil-in-water emulsions by tailoring the wetting behavior of colloidal particles in water using short amphiphilic molecules. We illustrate the method using hydrophilic metal oxide particles initially dispersed in the aqueous phase. The wettability of such particles in water is reduced by an in situ surface hydrophobization that induces particle adsorption at oil-water interfaces. We evaluate the conditions required for particle adsorption at the liquid-liquid interface and discuss the effect of the emulsion initial composition on the final microstructure of oil-water mixtures containing high concentrations of alumina particles modified with short carboxylic acids. This new approach for emulsion preparation can be easily applied to a variety of other metal oxide particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号