首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of P/As mixed pnicogen phases of composition (CuI)(8)P(12-x)As(x), in which x = 2.4, 4.2, 4.8, 5.4, and 6.6, have been synthesized and characterized by X-ray single crystal and powder diffraction, solid-state NMR spectroscopy, thermal gravimetric analysis, and impedance spectroscopy. These materials are isostructural to (CuI)(8)P(12) and consist of neutral, tubular P/As mixed pnicogen chains associated with Cu(I) and I(-) ions. The As is distributed throughout the pnicogen chains; however, the "roof" sites of the [P8] cage show preferred occupation by As relative to the other sites. Accordingly, the change in cell volume is not a linear function of the As incorporation. Solid-state (31)P NMR spectroscopy of the 40 % As incorporated sample are consistent with the X-ray structural model, with extensive broadening due to (31)P-(75)As coupling and site disorder, and a change in the chemical shifts of the resonances due to the As substitution into the lattice. The degree of copper ion site disorder, probed by single-crystal X-ray diffraction, increases with increasing As content. Although very little change is observed in the copper ionic conductivity of polycrystalline samples, which ranges from 1.8-5.1 x 10(-6) S cm(-1) for (CuI)(8)P(12-x)As(x), x = 0, 4.2, 5.4; a single crystal (x = 4.8) measured along the needle axis has a conductivity of 1.7 x 10(-3) S cm(-1) at 128 degrees C. This represents an order of magnitude improvement in conductivity over (CuI)(8)P(12) at the same temperature.  相似文献   

2.
The interactions of synthetic chalcocite surfaces with diethyldithiophosphate, potassium salt, K[S2P(OC2H5)2], were studied by means of 31P cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy and scanning electron microscopy (SEM). To identify the species formed on the Cu2S surfaces, a polycrystalline {CuI6[S2P(OC2H5)2]6} cluster was synthesized and analyzed by SEM, powder X-ray diffraction techniques and solid-state 31P CP/MAS NMR and static 65Cu NMR spectroscopy. 31P chemical shift anisotropy (CSA) parameters, delta(cs) and eta(cs), were estimated and used for assigning the bridging type of diethyldithiophosphate ligands in the {CuI6[S2P(OC2H5)2]6} cluster. The latter data were compared to 31P CSA parameters estimated from the spinning sideband patterns in 31P NMR spectra of the collector-treated mineral surfaces: formation of polycrystalline {CuI6[S2P(OC2H5)2]6} on the Cu2S surfaces is suggested. The second-order quadrupolar line shape of 65Cu was simulated, and the NMR interaction parameters, CQ and etaQ, for the copper(I) diethyldithiophosphate cluster were obtained.  相似文献   

3.
(CuI)(3)P(4)S(4) is obtained by reaction of stoichiometric amounts of CuI, P, and S in evacuated silica ampoules. The yellow compound consists of monomeric beta-P(4)S(4) cage molecules that are separated by hexagonal columns of CuI. (CuI)(3)P(4)S(4) crystallizes isotypic to (CuI)(3)P(4)Se(4) in the hexagonal system, space group P6(3)cm (no. 185) with a=19.082(3), c=6.691(1) A, V=2109.9(6) A(3), and Z=6. Three of the four phosphorus atoms are bonded to copper, whereas no bonds between copper and sulfur are observed. The two crystallographically distinct copper sites are clearly differentiated by (65)Cu magic-angle spinning (MAS) NMR spectroscopy. Furthermore, an unequivocal assignment of the (31)P MAS-NMR spectra is possible on the basis of homo- and heteronuclear dipole-dipole and scalar interactions. Dipolar coupling to the adjacent quadrupolar spins (63, 65)Cu generates a clear multiplet structure of the peaks attributable to P1 and P2, respectively. Furthermore, the utility of a newly developed two-dimensional NMR technique is illustrated to reveal direct connectivity between P atoms based on ((31)P-(31)P) scalar interactions.  相似文献   

4.
Abstract

The orientational ordering of three 4′-cyanophenyl-4-alkylbenzoates (with number of carbons in the alkyl chain, n = 6,7 and 8; hereafter abbreviated as n-CPBs) has been investigated by 13C NMR. The order parameters of different molecular segments in the nematic phase of the n-CPBs were determined by the two-dimensional technique of separated local field (SLF) spectroscopy combined with off-magic-axis, variable-angle spinning (VAS) of the sample. The carbon-13 chemical shifts for each carbon nucleus in these compounds were determined by slowly spinning the sample parallel to the applied magnetic field. The order parameters obtained from SLF/VAS studies are linearly related to the corresponding anisotropic carbon-13 chemical shifts. These results provide a convenient way to obtain the order parameters for other homologous members of this liquid crystal series by direct measurement of only their carbon-13 chemical shifts in conjunction with the observed linear relationship between order parameters and chemical shifts.  相似文献   

5.
Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu(+) ions with NH(3) in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of (47)Ti(16)O(+), (49)Ti(16)O(+) and (47)Ti(18)O(+) on (63)Cu(+) and (65)Cu(+) by detecting Cu(+) as the product cluster ion Cu(NH(3))(2)(+). As the signal of (63)Cu(NH(3))(2)(+) overlapped with that of (97)Mo(+) which existed in the samples, (65)Cu(NH(3))(2)(+) was detected at m/z 99. The effect of the operating conditions of DRC system was studied in order to obtain the best signal to noise ratio for Cu(NH(3))(2)(+) at m/z 99. The formation of Cu(NH(3))(2)(+) was through the clustering reaction Cu(+)+2NH(3)-->Cu(NH(3))(2)(+) which resulted in the separation of analyte from the interfering oxide. The detection limit for Cu(NH(3))(2)(+) was 0.015 ng mL(-1) as Cu. The method was applied to the determination of copper in NIST SRM 1633a and 1633b coal fly ash reference materials. The precision between sample replicates was better than 2.0% and the analysis results were in good agreement with the certified values.  相似文献   

6.
High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.  相似文献   

7.
A novel and economical microwave route has been developed for the synthesis of electrochemically active LiV(3)O(8) material by using a domestic microwave oven. The heating behavior of the designed reaction system guided the preparation of LiV(3)O(8) at a suitable irradiation power (i.e. heating rate), reaction time, and temperature. At the lowest irradiation power, the conversion fraction of reactants was mainly controlled by reaction temperature. Characterization results of X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, scanning (SEM) and transmission (TEM) electron microscopy, and BET surface areas indicated that the phases of samples prepared by microwave and traditional methods were in good agreement. Nevertheless, the crystallinity, crystallite configuration, and morphology of the samples were different, and were affected by the irradiation time and power. A floppy superposition structure of nanosheets (the size of one nanosheet was about 4.5 microm x 1.2 microm x 3 nm) was preferentially grown at the lowest irradiation power, and this effect on structure was more in evidence as the nanorods formed at the highest irradiation power. Electrochemical studies on ionic conductivity, electrochemical impedance spectroscopy (EIS), and charge-discharge capacity were carried out. It was found that the conductivity, first discharge capacity, and cycle performances of the samples were affected by the crystal size, crystallinity, and crystal configuration and defection concentration. The sample L30 prepared at the lowest irradiation power and the shortest time (30 min) showed the highest discharge capacity (335 mAh/g), but its discharge capacity decreased rapidly. By comparison, the sample L100 had a floppy superposition structure of nanosheets and a high surface area, provided a good two-dimensional channel for the transition of Li(+) ions, and was stable during the intercalation/deintercalation process of Li(+) ions, therefore the high ionic conductivity, high discharge capacity, and good cycle performance were presented. The relationship between the electrochemical properties and the irradiation power was discussed.  相似文献   

8.
Layering solutions of P(4)S(3) in CH(2)Cl(2) with solutions of CuCl or CuI in CH(3)CN gives the coordination polymers (P(4)S(3))(3)(CuCl)(7) (1), (P(4)S(3))(2)(CuCl)(3) (2), (P(4)S(3))(CuI) (3) and (P(4)S(3))(CuI)(3) (4), respectively, after slow diffusion. The yellow compounds were characterised by elemental analysis, (31)P magic-angle spinning (MAS) NMR spectroscopy and single-crystal X-ray crystallography. The solid-state structures demonstrate the unexpected ligand versatility of the P(4)S(3) molecule, which interacts through two, three, or even all of the phosphorus atoms with copper according to the nature of the copper halide. Compound 1 has a three-dimensional network in which linear and cylindrical infinite CuCl subunits coexist with diatomic CuCl building blocks. For the first time, all four P atoms of the P(4)S(3) cage are involved in coordination with metal atoms. The 3D structure of 2 contains stacks of P(4)S(3) that are interconnected by slightly undulated and planar [CuCl](n) ribbons. Compound 3 is a one-dimensional polymer composed of alternating (CuI)(2) rings and P(4)S(3) bridges. The structure of 4 consists of undulated [CuI](n) layers in which the P(4)S(3) cage functions as a bridge within the layer, as well as a spacer between the layers. The (31)P MAS NMR spectra obtained are in good agreement with the solid-state structures obtained crystallographically. Thus, analytically pure 3 and 4 show singlet peaks that correspond to uncoordinated P and quartets owing to coupling with (63)Cu and (65)Cu, respectively, whereas that of 1 contains quartets according to all-P coordination. The spectrum of 2 was obtained from a sample that still contained 40 % of 1.  相似文献   

9.
This contribution describes a method that manipulates the alignment director of a liquid crystalline sample to obtain anisotropic magnetic interaction parameters, such as dipolar coupling, in an oriented liquid crystalline sample. By changing the axis of rotation with respect to the applied magnetic field in a spinning liquid crystalline sample, the dipolar couplings present in a normally complex strong coupling spectrum are scaled to a simple weak coupling spectrum. This simplified weak coupling spectrum is then correlated with the isotropic chemical shift in a switched angle spinning (SAS) two-dimensional (2D) experiment. This dipolar-isotropic 2D correlation was also observed for the case where the couplings are scaled to a degree where the spectrum approaches strong coupling. The SAS 2D correlation of C(6)F(5)Cl in the nematic liquid crystal I52 was obtained by first evolving at an angle close to the magic angle (54.7 degrees ) and then directly detecting at the magic angle. The SAS method provides a 2D correlation where the weak coupling pairs are revealed as cross-peaks in the indirect dimension separated by the isotropic chemical shifts in the direct dimension. Additionally, by using a more complex SAS method which involves three changes of the spinning axis, the solidlike spinning sideband patterns were correlated with the isotropic chemical shifts in a 2D experiment. These techniques are expected to enhance the interpretation and assignment of anisotropic magnetic interactions including dipolar couplings for molecules dissolved in oriented liquid crystalline phases.  相似文献   

10.
An example of an electrochemical oscillator in ionic liquids is presented. Solutions of the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, which contain both Cu(+) and Cu(2+) ions, show current oscillations during potentiostatic polarization. The oscillations were analyzed by the Quartz Crystal Microbalance (QCM) technique and by Electrochemical Impedance Spectroscopy (EIS). The electrochemical oscillations are of the N-NDR-type, because the low frequency end of the impedance spectrum has negative real impedances. The oscillating current leads to an oscillating growth speed of a metallic copper layer. Besides the presence of both Cu(+) and Cu(2+), the presence of chloride is a necessary, yet not a sufficient, condition for the occurrence of current oscillations. Oscillating currents were also observed for the ionic liquids 1-butyl-3-methylimidazolium chloride and 1-butyl-2,3-dimethylimidazolium chloride, but not for tributyltetradecylphosphonium chloride and N-butylpyridinium chloride.  相似文献   

11.
Wu G  Wasylishen RE 《Inorganic chemistry》1996,35(11):3113-3116
The first observations of (31)P-(31)P indirect spin-spin (J) coupling in copper(I) phosphine complexes are reported for solid Cu(PPh(3))(2)X (X = NO(3)(-), BH(4)(-)). Values of (2)J((31)P,(31)P), 157 +/- 5 and 140 +/- 5 Hz for Cu(PPh(3))(2)NO(3) and Cu(PPh(3))(2)BH(4), respectively, have been obtained from two-dimensional (2D) J-resolved (31)P NMR spectra obtained under slow magic-angle spinning (MAS) conditions. In both complexes, the two phosphine ligands are crystallographically equivalent; thus, the two (31)P nuclei have identical isotropic chemical shifts. Under rapid sample spinning conditions, the (31)P MAS NMR spectra exhibit relatively sharp overlapping asymmetric quartets arising from (1)J((63/65)Cu,(31)P) and residual (63/65)Cu-(31)P dipolar interactions. No evidence of (2)J((31)P,(31)P) is apparent from the spectra obtained with rapid MAS; however, under slow MAS conditions there is evidence of homonuclear J-recoupling. Peak broadening due to heteronuclear dipolar interactions precludes measurement of (2)J((31)P,(31)P) from standard 1D (31)P MAS NMR spectra. It is shown that this source of broadening can be effectively eliminated by employing the 2D J-resolved experiment. For the two copper(I) phosphine complexes investigated in this study, the peak widths in the f(1) dimension of the 2D J-resolved (31)P MAS NMR spectra are about three times narrower than those found in the corresponding 1D (31)P MAS NMR spectra.  相似文献   

12.
Interactions of selenate with copper(I) oxide particles   总被引:1,自引:0,他引:1  
The chemical mechanisms responsible for the immobilization of selenate (SeO4(2-) from aqueous solutions on cuprite (Cu2O) particles were determined from batch experiments. This was achieved by performing both solution-phase analyses and characterization of solid particles by X-ray photoelectron spectroscopy and transmission electron microscopy techniques, after equilibration of cuprite particles with selenate-containing solutions at various pH values, solid-to-solution ratios, and ionic strengths. Two distinct mechanisms have been pointed out. In the acidic medium, where the acid-catalyzed dissolution of cuprite into CuI species occurs, the immobilization of selenate implies a redox reaction with transient CuI leading to the precipitation of copper(II) selenite, CuSeO3. In the absence of protons added in the medium, Cu2O is chemically stable and immobilization of SeO4(2-) is essentially due to adsorption in the form of an outer-sphere surface complex. The uptake level of selenate by Cu2O is markedly lower than that observed for selenite species in the same conditions.  相似文献   

13.
Stoichiometric copper(I) selenide nanoparticles have been synthesized using the hot injection method. The effects of air exposure on the surface composition, crystal structure, and electronic properties were monitored using X-ray photoelectron spectroscopy, X-ray diffraction, and conductivity measurements. The current-voltage response changes from semiconducting to ohmic, and within a week a 3000-fold increase in conductivity is observed under ambient conditions. The enhanced electronic properties can be explained by the oxidation of Cu(+) and Se(2-) on the nanoparticle surface, ultimately leading to a solid-state conversion of the core from monoclinic Cu(2)Se to cubic Cu(1.8)Se. This behavior is a result of the facile solid-state ionic conductivity of cationic Cu within the crystal and the high susceptibility of the nanoparticle surface to oxidation. This regulated transformation is appealing as one could envision using layers of Cu(2)Se nanoparticles as both semiconducting and conducting domains in optoelectronic devices simply by tuning the electronic properties for each layer through controlled oxidation.  相似文献   

14.
In capillary electrophoresis, it is commonly considered that even a moderately high ionic concentration in the background electrolyte (BGE) leads to high currents, resulting in Joule heating and serious peak distortion. As a new approach to overcome this problem, zwitterionic (Zwittergent-3-14) and/or non-ionic (Tween 20) surfactants have been added to BGEs containing high salt concentrations (e.g. 0.3 M NaCl) and have been shown to result in acceptable separation currents (<200 microA). In turn, these BGEs could be applied to the separation of samples containing high salt concentrations (such as undiluted seawater) without the occurrence of any significant peak broadening due to electrodispersion of the sample. For example, a BGE comprising 10 mM Zwittergent-3-14, 50 mM Tween 20, 0.3 M NaCl and 5 mM phosphate (ph 7) could be used for the determination of UV-absorbing anions in seawater, giving good peak shapes and detection limits of 0.8 microM and 0.6 microM for nitrate and bromide, respectively. The beneficial effects of the non-ionic surfactant on the separation were attributed largely to suppression of the electro-osmotic flow. On the other hand, the zwitterionic surfactant was found to be capable of the incorporation of some anions in accordance with the behaviour of these same surfactants in electrostatic ion chromatography. This incorporation resulted in a decreased conductivity of the BGE and also a change in the separation selectivity of the system.  相似文献   

15.
An electrochemical study of mono- and di-copper constrained cyclen macrotricycles is presented. Electrochemical data in DMF solution indicate that the reduction of dinuclear complexes occurs in two steps in the -0.4 to -0.8 V vs.AgCl/Ag potential range yielding CuII CuI and CuI CuI species further reduced to Cu metal at highly negative potentials. Mononuclear complexes are reduced in two steps to CuI and Cu metal. Electrochemical data suggest that reduction of both mononuclear and dinuclear complexes approach a square scheme involving electrochemically-driven conformational shifts for metal ions. The presence of endo- and exo-forms of the complexes are revealed by changes in the electrochemical response of the complexes in the presence of tetraethylammonium chloride, 1-azabicyclo[2.2.2]octane and diazabicyclo[2.2.2]octane competing ligands.  相似文献   

16.
The orientation of membrane proteins undergoing fast uniaxial rotation around the bilayer normal can be determined without macroscopic alignment. We show that the motionally averaged powder spectra exhibit their 0° frequency, [Formula: see text], at the same position as the peak of an aligned sample with the alignment axis parallel to the magnetic field. This equivalence is exploited to determine the orientation of a β-sheet antimicrobial peptide not amenable to macroscopic alignment, using (13)CO and (15)N chemical shifts from powder spectra. This powder sample approach permits orientation determination of naturally membrane-disruptive proteins in diverse environments and under magic-angle spinning.  相似文献   

17.
The beta and alpha phases of CuAlCl(4) have been characterized by solid-state (27)Al and (63)Cu magic angle spinning nuclear magnetic resonance. The very short spin--lattice relaxation times of the copper spins, and the sensitivity of the I = 3/2 (63)Cu nucleus to the small differences in the local structure of Cu in the two phases, allowed (63)Cu spectra to be acquired in very short time periods (1 min), in which the beta and alpha phases were clearly resolved. This time resolution was exploited to follow the phase transition from the pseudohexagonal close-packed beta-CuAlCl(4) into the pseudocubic close-packed alpha-CuAlCl(4), which occurs above 100 degrees C. In situ time-resolved (63)Cu MAS NMR and synchrotron X-ray diffraction experiments were used to measure the kinetics of this phase transition as a function of temperature. The transformation was shown to be a first-order phase transition involving no intermediate phases with an activation energy of 138 kJ/mol. The kinetic data obey a first-order Avrami--Erofe'ev rate law. A one-dimensional growth mechanism is proposed that involves a combination of Cu(+) ion self-diffusion and a translational reorganization of the close-packed anion layers imposed by the periodic rotations of [AlCl(4)](-) tetrahedra. This beta to alpha phase transformation can be induced at ambient temperatures by low partial pressures of ethylene.  相似文献   

18.
采用浸渍法制备了多壁碳纳米管(MWCNT)负载的Cu2O和CuI催化剂,并运用粉末X射线衍射、红外光谱、扫描电镜-能量散射谱、透射电镜和NH3程序升温脱附等技术对催化剂进行了表征。结果表明,催化剂中沉积的Cu2O和CuI分别以立方相和γ相存在于MWCNT上,且表现出由弱到强的拉电子(Lewis酸)性能。将催化剂用于催化芳醛与2-氨基吡啶氧化酰胺化反应合成N-(吡啶-2-基)苯酰胺类化合物,产物选择性为100%,收率为50%–95%。 CuI/MWCNT催化剂上产物分离收率性能好于Cu2O/MWCNT,但后者的循环使用性能更好。与共价的CuI相比,离子化的Cu2O与极性的酸活化的MWCNT间具有更适宜的相互作用,这种不同的相互作用可显著影响2-氨基吡啶的氨基对芳醛羰基的亲核进攻速率。  相似文献   

19.
The system of CuI and NBS was found to provide both I (+) and Cu (+) for the first time. An efficient method for preparation of 5-iodo-1,4-disubstituted-1,2,3-triazole was achieved by multicomponent one-pot reaction of azides with alkynes in the presence of the novel CuI and NBS catalytic system. The high tolerance of various sensitive groups revealed the potential applications of this method in organic synthesis and drug discovery.  相似文献   

20.
Aggregation of imidazolium-based ionic liquid, C(12)mim(+)NO(3)(-), in both polar solvent of water and nonpolar solvent of benzene was elucidated by electrical conductivity, small-angle neutron scattering (SANS), and (1)H NMR measurements. The electrical conductivities of C(12)mim(+)NO(3)(-)-water solutions at 298 K as a function of ionic liquid concentration showed a break point at 8.4 mmol dm(-3) as a cmc. However, those of C(12)mim(+)NO(3)(-)-benzene solutions drastically increase in accordance with a cubic function of concentration, but without a break point. The SANS profiles of both aqueous and benzene solutions obviously differ from each other. The profiles of the aqueous solutions indicated the formation of polydisperse spherical micelles. Those of the benzene solutions revealed Ornstein-Zernike behavior. Thus, C(12)mim(+)NO(3)(-) forms clusters in the benzene solutions, but the shape of clusters is indefinite. On the basis of the (1)H NMR chemical shifts of the aqueous solutions, the effect of nitrate on the formation of micelles was discussed on a microscopic scale. Furthermore, the interactions among C(12)mim(+), NO(3)(-), and benzene molecules in the benzene solutions were considered according to the (1)H NMR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号