首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Organosphosphate pesticides have been found extractable by headspace solid-phase microextraction (SPME), and the best conditions of their extraction from human whole blood and urine samples have been investigated. The body fluid samples containing nine pesticides (IBP, methyl parathion, fenitrothion, malathion, fenthion, isoxathion, ethion, EPN and phosalone) were heated at 100°C in a septum-capped vial in the presence of various combinations of acid and salts, and SPME fiber was exposed to the headspace of the vial to allow adsorption of the pesticides before capillary gas chromatography (GC) with nitrogen-phosphorus detection. The heating with distilled water/HCl/(NH4)2SO4/NaCl and with distilled water/HCl gave the best results for urine and whole blood, respectively. Recoveries of the nine pesticides were 0.8–10.6% except for phosalone (0.03%) for whole blood, and 3.8–40.2% for urine. The calibration curves for the pesticides showed linearity in the range of 50–400 ng/0.5 mL for whole blood except for malathion (100–400 ng/0.5 mL whole blood) and 7.5–120 ng/0.5 mL for urine except for phosalone (15–120 ng/0.5 mL urine) with detection limits of 2.2–40 ng/0.5 mL for whole blood and 0.8–12 ng/0.5 mL for urine.  相似文献   

2.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

3.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   

4.
Summary Phencyclidine (PCP) was found to be extractable by headspace solid-phase microextraction (SPME) from human whole blood and urine. Sample solutions were heated at 90°C in the presence of NaOH and K2CO3, and an SPME fiber was exposed in the headspace of a vial for 30 min. Immediately after withdrawal of the fiber, it was analyzed by gas chromatography with surface ionization detection (GC-SID). Recoveries of PCP were approximately 9.3–10.8% and 39.8–47.8% for whole blood and urine samples, respectively. The calibration curve for PCP showed good linearity in the range 2.5–100 ng mL–1 whole blood and 0.5–100 ng mL–1 urine. The detection limits were approximately 1.0 ng mL–1 for whole blood and 0.25 ng mL–1 for urine.  相似文献   

5.
凝胶渗透色谱净化-气质联用法测定土壤中三嗪类除草剂   总被引:5,自引:2,他引:5  
建立了以超声波提取、凝胶渗透色谱净化(GPC)、HP-5 MS石英毛细管柱分离、E1离子源质谱法测定土壤中13种三嗪类除草剂的多残留检测方法.三嗪类除草剂的添加水平为0.010~0.100 mg/kg时,平均回收率为72.1%~118.3%,相对标准偏差为2.6%~19.8%(n=4);方法的检出限为0.30~2.50μg/kg.  相似文献   

6.
A monolithic ametryn molecular-imprinted polymer based on a simple polymerization method was fabricated for use as new solid-phase microextraction (SPME) fiber, which can be coupled with GC and GC/MS for selective extraction and analysis of triazine herbicides. Methacrylic acid (MAA), ethylene glycol dimethacrylate (EDMA) and ametryn bear role of functional monomer, cross-linker and template, respectively. In the optimized conditions the fabricated fiber showed better molecular recognition abilities for methylthiotriazine herbicides than chloro-triazine herbicides. By use of bi-Langmuir isotherm model the evaluated equilibrium constants for ametryn were 0.01 and 890.69 μM−1, and the numbers of binding sites were 129.98 and 5.82 nmol g−1, respectively. The high extraction efficiency was obtained for ametryn, prometryn, terbutryn, atrazine, simazine, propazine, and cyanazine, yielding the detection limits of 14, 28, 45, 56, 85, 95 and 74 ng mL−1, respectively by GC with flame ionization detection. The reliability of the prepared fiber for extraction of ametryn and other analogues in real samples has been investigated and proved by using spiked samples such as tap water, rice, maize, and onion.  相似文献   

7.
Shiqian Gao 《Talanta》2010,82(4):1371-99
The determination of phenylurea and triazine herbicides in milk based on microwave assisted ionic liquid microextraction (MAILME) coupled with high-performance liquid chromatographic separation was described. The experimental parameters of the MAILE, including type and amount of ionic liquid, microwave extraction power, extraction time and salt concentration in sample, were evaluated by a univariate method and orthogonal screening. When 60 μL of [C6MIM][PF6] was used as extraction solvent the target compounds can be isolated from the 4 mL of milk. The MAILME is quick (7 min) and simple. The detection limits for isoproturon, monolinuron, linuron, propazine, prometryne, terbutryn and trietazine are 0.46, 0.78, 1.00, 1.21, 1.96, 0.84 and 1.28 μg L−1, respectively. The proposed method was applied to the analysis of milk samples and the recoveries of the analytes ranged from 88.4 to 117.9% and relative standard deviations were lower than7.43%.  相似文献   

8.
《Chromatographia》1995,41(5-6):178-182
Summary High-performance liquid chromatography with UV detection was used to determine eight triazine herbicides in milk. Solid-phase extraction was performed using a double trap; first, a nonspecific adsorbent (Carbograph), and then a cation exchanger (SCX). Eluate from the SCX was evaporated to dryness under reduced pressure and redissolved in mobile phase. An aliquot was injected into the chromatograph, which was operated isocratically in the reverse-phase mode with UV detection at 225 nm. Analytical recoveries for the eight triazines ranged from 73.0 % to 92.4 %. The limit of sensitivity of this method was about 0.09 ng mL−1 of milk. The method was validated and evaluated by comparison with a method reported in literature.  相似文献   

9.
Summary High-performance liquid chromatography with UV detection was used to determine eight triazine herbicides in milk. Solid-phase extraction was performed using a double trap; first, a nonspecific adsorbent (Carbograph), and then a cation exchanger (SCX).Eluate from the SCX was evaporated to dryness under reduced pressure and redissolved in mobile phase. An aliquot was injected into the chromatography, which was operated isocratically in the reverse-phase mode with UV detection at 225 nm.Analytical recoveries for the eight triazines ranged from 73.0% to 92.4%. The limit of sensitivity of this method was about 0.09 ng mL–1 of milk. The method was validated and evaluated by comparison with a method reported in literature.  相似文献   

10.
Summary A method for determination of trace amounts of the pesticides tebufenpyrad and oxadiazon, previous solid-phase microextraction (SPME), was developed using gas chromatographymass spectrometry and selected ion monitoring (GC-MS; SIM). Both pesticides were extracted with a fused silica fiber coated with 100 μm polydimethylsiloxane. The effects of pH ionic strength, sample volume, extraction and desorption times as well as extraction temperature were studied. The linear concentration range of application was 0.5–250 ng mL−1 for both compounds, with a detection limit of 0.06 ng mL−1 for tebufenpyrad and 0.02 ng mL−1 for oxadiazon. SPME-GC-MS analysis yielded good reproducibility (RSD between 7.5–10.1%). It was used to check the eventual existence of tebufenpyrad and oxadiazon above this limit in water and soil samples from Granada (Spain) as well as in human urine samples. The method validation was completed with spiked matrix samples. It can be applied as a monitoring tool for water, soil and urine in the investigation of environmental and occupational exposure to tebufenpyrad and oxadiazon.  相似文献   

11.
Summary A simple and sensitive method is presented for determination of styrene, toluene, ethylbenzene, isopropylbenzene andn-propylbenzene in human body fluids by capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood or urine sample containing each compound andp-diethylbenzene (internal standard, IS) in a 7.0-mL vial at 60°C for 20 min, 5 mL of headspace vapor was drawn into a glass syringe and injected into a GC. All vapor was introduced into an Rtx-Volatile middle bore capillary column in splitless mode at oven temperature of 20°C to trap entire analytes, and the oven temperature then programmed to 280°C for GC measurements by flame ionization detection. The present conditions gave sharp peaks of each compound and IS, and low background noises for whole blood or urine samples.  相似文献   

12.
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.  相似文献   

13.
Summary Ethanol has been found extractable from human whole blood and urine samples by headspace solid-phase micro extraction (SPME) with a Carbowax/divinylbenzene-coated fiber. After heating a vial containing the body fluid sample with ethanol, and isobutanol as internal standard (IS) at 70°C in the presence of (NH4)2SO4, a Carbowax/divinylbenzene-coated SPME fiber was exposed in the headspace of the vial to allow adsorption of the compounds. The fiber needle was then injected into a middle-bore capillary gas chromatography (GC) port. The headspace SPME-GC gave intense peaks for both compounds; a small amount of background noises appeared, but did not interfere with the detection of the compounds. Recoveries of ethanol and IS were 0.049 and 0.026% for whole blood, respectively, and 0.054 and 0.085% for urine, respectively. The calibration curves for ethanol showed excellent linearity in the range of 80–5000 mg L–1 for whole blood and 40–5000 mg L–1 for urine; the detection limits for both samples were 20 and 10 mg L–1, respectively. The data on actual determination of ethanol after the drinking of beer are also presented for two subjects.  相似文献   

14.
Summary Two procedures, based on large-volume injection with a programmed-temperature vaporizer (PTV), have been developed for the determination of several triazine and organophosphorus pesticides. The use of PTV for injection in gas chromatography (GC) has enabled the introduction of up to 200 μL sample extract into the GC, thus increasing the sensitivity of the method. PTV injection has been combined off-line with two different microextraction procedures—liquid-liquid partition and solid-phase extraction. A simple and rapid off-line liquid-liquid microextraction procedure (5 mL water/1 mL methyltert-butyl ether) was applied to surface water samples spiked at levels between 0.01 and 5μg L−1. Recoveries of the overall procedure were >80% and the precision was better than 15%. Detection limits were <30 ngL−1 from 200-μL injections in GC-NPD analysis of triazines and GC-FPD analysis of organophosphorus pesticides. Off-line automated solid-phase extraction with C18 cartridges has been applied to water samples (50 mL) spiked at 0.01, 0.1 and 1 μg L−1. The overall procedure was satisfactory (recoveries >80% and coefficients of variation <12%) and the limits of detection ranged from 1 to 9 ng L−1. Finally, several surface water samples were anlysed, and triazine herbicides were detected at concentrations of approx. 0.1–0.2 μg L−1. The results were similar to those obtained by conventional solvent extraction then GC-MSD after splitless injection of 2 μL.  相似文献   

15.
This paper describes the extraction of 49 organophosphorus pesti-cides (OPPs) from water samples using solid-phase microextraction (SPME). Three fibers, including a 15-μm XAD-coated fiber, a 85-μm polyacrylate-coated fiber, and a 30-μm polydimethylsilox-ane-coated fiber (PDMS), were evaluated here. The effects of stirring and the addition of NaCl to the sample were examined for the polyacrylate-coated fiber. The precision of the technique was examined for all three fibers and the extraction kinetics were investigated using the XAD- and polyacrylate-coated fibers. With some exceptions, the XAD- and polyacrylate-coated fibers performed better than the PDMS-coated fiber. The superiority of the XAD-nd polyacrylate-coated fiber. The superiority of the XAD- and polyacrylate-coated fibers over the PDMS-coated fibers can be attribuibuted to the aromatic functionalities of the XAD and the polar functionalities in the polyacrylate. The relatively high percent RSDs indicate that the SPME technique needs to be further refined before it can be used for anything other than screening. A more effective form of agitation than mechanical stirring may be neccessary to reduce variability and achieve a faster equilibrium between the sample and the SPME fiber.  相似文献   

16.
Summary Mass spectra of 12 triazines were obtained by electron impact (EI), positive-ion chemical ionization (PCI) and negative-ion chemical ionization (NCI) using methane and isobutane as reagent gases. EI mass spectrometry is more sensitive than PCI and NCI, although the chemical ionization modes increase selectivity markedly. A pre-column packed with polymer stationary phase was employed to preconcentrate surface and drinking water samples. After desorption of the analytes with ethyl acetate, an aliquot was injected directly into the GC-MS system. Atrazine and simizine were found in these samples at 10–80 ppt levels. The limits of detection for both herbicides were below 10 ppt in drinking water.  相似文献   

17.
A method based on solid-phase microextraction (SPME) coupled with GC and ion trap tandem mass spectrometry has been developed for the analysis of nine herbicides and degradation products, among the most frequently found in natural water. A polydimethylsiloxane–divinylbenzene (PDMS–DVB)-coated fiber was selected to extract the analytes directly from the samples over the 0.01–1 μg L−1 concentration range. Optimization of manual and automated SPME was performed on the basis of desorbed amounts, via various factorial experiment designs. Of the two modes, the automated one was found to be the most efficient. Memory effect was avoided owing to the 10-min fiber desorption time. Limits of detection reached down to below 0.01 μg L−1 and repeatability ranged from 3 to 15% in natural water. A validation study was conducted involving the quantitation of the target compounds in Seine water with SPME/GC–MS-MS external calibration.  相似文献   

18.
A simple, rapid, efficient, and environmentally friendly method for the determination of some triazine herbicides (simazine, atrazine, prometone, ametryn and prometryne) in water samples was developed by ultrasound-assisted emulsification microextraction (USAEME) coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD). The main parameters that affect the extraction efficiencies, such as the kind and volume of the extraction solvent, ultrasound emulsification time and salt addition, were investigated and optimized. Under the optimum conditions, the method was sensitive and showed a good linearity within a range of 0.5 to 200?ngm?L?1 for simazine, atrazine, prometone, ametryn and prometryne, with the correlation coefficients (r) varying from 0.9993 to 0.9998. High enrichment factors were obtained ranging from 148 to 225. The limits of detection (LODs) were in the range between 0.06 and 0.1?ngm?L?1 and the limits of quantification (LOQs) were in the range between 0.2 and 0.3?ngm?L?1. The recoveries of the analytes from water samples at spiking levels of 5.0 and 50.0?ngm?L?1 were ranged from 82.4% to 107.0%. The relative standard deviations (RSDs) varied from 3.0% to 4.6%. The results demonstrated that the USAEME-HPLC-DAD method was an ef?cient pretreatment and enrichment procedure for the determination of triazine pesticides in real water samples.  相似文献   

19.
Natalia Campillo 《Talanta》2007,71(3):1417-1423
A direct immersion solid-phase microextraction (SPME) procedure was used in combination with capillary gas chromatography with atomic emission detection (GC-AED) for the determination of 10 pesticides (organochlorines, organophosphorus compounds and pyrethrins) in herbal and tea infusions. Ionic strength, sample dilution and time and temperature of the absorption and desorption stages were some of the parameters investigated in order to select the optimum conditions for SPME with a 100 μm PDMS fiber-coating. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) and bromine (478 nm) emission lines, which provided nearly specific chromatograms. Calibration was carried out by using a spiked sample infusion. The detection limits varied between 11.9 ng ml−1 for deltamethrin and 0.03 ng ml−1 for p,p′-DDE and p,p′-DDD. The recoveries ranged from 73.5% for deltamethrin to 108.3% for p,p′-DDT in a spiked white tea infusion. Two of the eight samples analyzed contained low levels of some the pesticides considered.  相似文献   

20.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号