首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetoelastic problem for a transversely isotropic ferromagnetic body with a parabolic crack in the plane of isotropy is solved explicitly. The body is in an external magnetic field, which is perpendicular to the plane of isotropy. The field induces elastic strains and a magnetic field in the body. The characteristics of the stress–strain distribution and induced magnetic field are determined; and their singularities in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented  相似文献   

2.
The stress problem is solved for an infinite elastic magnetically soft ferromagnetic containing an ellipsoidal cavity. The body is in a homogeneous magnetic field directed along the shortest axis of the ellipsoid. The main stress-strain and magnetic characteristics of the body are determined. The stress distribution over the cavity surface is analyzed__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 70–78, March 2005.  相似文献   

3.
The magnetoelastic stress-strain problem for a transversely isotropic ferromagnetic body with an elliptical crack in the isotropy plane is solved explicitly. The body is in an external magnetic field perpendicular to the isotropy plane. The magnetic field induces elastic strains and an internal magnetic field in the body. The main characteristics of stress-strain state and induced magnetic field are determined and their features in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 48–59, January 2005.  相似文献   

4.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing an elliptic crack is considered. It is assumed that the body is under an external magnetic field perpendicular to the crack plane. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the elliptic crack are studied. Formulas are given for the stress intensity factors for the force and magnetic fields near the crack tip  相似文献   

5.
The unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid in the forward stagnation point region of a rotating sphere in the presence of a magnetic field are investigated in this study. The unsteadiness in the flow field is caused by the velocity at the edge of the boundary layer and the angular velocity of the rotating sphere, both varying continuously with time. The system of ordinary differential equations governing the flow is solved numerically. For some particular cases, an analytical solution is also obtained. It is found that the surface shear stresses in x- and y-directions and the surface heat transfer increase with the acceleration, the magnetic and the rotation parameters whether the magnetic field is fixed relative to the fluid or body, except that the surface shear stress in x-direction and the surface heat transfer decrease with increasing the magnetic parameter when the magnetic field is fixed relative to the body. For a certain value of the acceleration parameter, the surface shear stress in the x-direction vanishes while the surface shear stress in the y-direction and the surface heat transfer remain finite. Also, below a certain value of the acceleration parameter, reverse flow occurs in the x-component of the velocity profile. Received on 18 May 1998  相似文献   

6.
Two-dimensional magnetic field and magneto-elastic stress solutions are presented for a magnetic material of a thin infinite plate with an elliptical hole under uniform magnetic field. The linear constitutive equation is used for the magnetic field and the stress analyses. The magneto-elastic stress is analyzed using Maxwell stress since only Maxwell stress is caused as a body force according to the electro magneto theory. Except the approximation of the plane stress state in which the plate is thin, no further assumption is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress is completely satisfied without any linear assumptions on the boundary. First, magnetic field and stress for soft ferromagnetic material is analyzed and then those for paramagnetic and diamagnetic materials are analyzed. It is stated that the stress components are the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields are different each other in the plates. If the analysis of magnetic field of paramagnetic materials is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material. Shear deflection as well as stress in the direction of the plate thickness arises and the solutions are also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived.  相似文献   

7.
Two dimensional solutions of the magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack subjected to uniform magnetic field. Using a rational mapping function, each solution is obtained as a closed form. The linear constitutive equation is used for these analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate. In the present paper, it raises a plane stress state for a thin plate, the deformation of the plate thickness and the shear deflection. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that those plane stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solutions of the magneto elastic stress are nonlinear for the direction of uniform magnetic field. Stresses in the direction of the plate thickness and shear deflection are caused and the solutions are also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length.  相似文献   

8.
Dynamic stress intensification around the crack in a layered composite subjected to an externally applied magnetic field is investigated. The effect of magnetic force is accounted for in the analysis as a body force. It tends to introduce damping into the system and reduces the intensification of the crack tip stress field. This is illustrated through the variations of the Mode I and Mode II stress intensity factors with time in addition to the influence of the geometric and material parameters of the composite structure. Numerical results are presented and discussed as the magnetic flux is varied with the physical parameters.  相似文献   

9.
Fracture of a rectangular piezoelectromagnetic body   总被引:5,自引:0,他引:5  
The singular stress, electric fields and magnetic fields in a rectangular piezoelectromagnetic body containing a center Griffith crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity factors and the energy release rates.  相似文献   

10.
The paper addresses a stress–strain problem for an infinite soft ferromagnetic body with an elliptic inclusion. The body is in a homogeneous magnetic field B 01. The basic stress–strain characteristics and induced magnetic field in the body and inclusion are determined and their features in the neighborhood of the inclusion are studied. The magnetoelastic and Maxwell stresses are plotted against the ratio of ellipse axes and the latitude angle. Maximum stresses versus magnetic induction and mechanical and magnetic properties of the material are tabulated  相似文献   

11.
Linearized equations and boundary conditions of a magnetoelastic ferromagnetic body are obtained with the nonlinear law of magnetization. Magnetoelastic interactions in a multi-domain ferromagnetic materials are considered for magneto soft materials, i.e. the case when the magnetic field intensity vector and magnetization vector are parallel. As a special case, the following two problems are considered: (1) the magnetoelastic stability of a ferromagnetic plate-strip in a homogeneous transverse magnetic field; (2) the stress–strain state of a ferromagnetic plane with a moving crack in a transverse magnetic field. It is shown that the modeling of magnetoelastic equations with a nonlinear law of magnetization provides qualitative and quantitative predictions on physical quantities including critical loads and stresses. In particular, it is shown that the critical magnetic field in plate stability problems found with the nonlinear law of magnetization is in better agreement with the experimental finding than the one found with a linear law. Furthermore, it is also shown that the stress concentration factor around a crack predicted with the nonlinear law of magnetization is more accurate than the one obtained with a linear counterpart. Numerical results are presented for above mentioned two problems and for various forms of nonlinear laws of magnetization.  相似文献   

12.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing a spherical cavity is considered. It is assumed that the body is under an external magnetic field. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the cavity are studied. Graphs are presented for the total magnitoelastic and Maxwell stresses as functions of the magnetic induction, the angle of dip, and the mechanical and magnetic properties of the material  相似文献   

13.
Two-dimensional solutions of the electric current, magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack under uniform electric current. Using a rational mapping function, the each solution is obtained as a closed form. The linear constitutive equation is used for the magnetic field and the stress analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate which raises a plane stress state for a thin plate and the deformation of the plate thickness. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, electric current, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that the stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solving the present magneto elastic stress problem, dislocation and rotation terms appear, which makes the present problem complicate. Solutions of the magneto elastic stress are nonlinear for the direction of electric current. Stresses in the direction of the plate thickness are caused and the solution is also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length and the electric current direction.  相似文献   

14.
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The non-linear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0<t*<1 and reach the steady-state values for t*≥4.  相似文献   

15.
The stress–strain state of an infinite isotropic magnetically soft ferromagnetic body with a spheroidal inclusion is analyzed. It is assumed that the body is in an external magnetic field. The basic stress–strain characteristics and the induced magnetic field near and inside the inclusion are analyzed. The plots and the table presented show how the total magnetoelastic and Maxwell stresses near and inside the inclusion depend on the ratio of the spheroid axes, the latitude angle, and the magnetic induction when the medium and the inclusion are dissimilar materials.  相似文献   

16.
Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deforma- tion of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.  相似文献   

17.
The present paper studies the dispersion relation of the radial vibrations of an orthotropic cylindrical tube. The effects of the magnetoelastic interaction on the problem are investigated. The problem is represented by the equations of elasticity taking into account the effect of the magnetic field as given by Maxwell's equations in the quasi-static approximation. The stress free conditions on the inner and outer surfaces of the hollow cylindrical cube are satisfied to form a dispersion relation in terms of the wavelength, the cylinder radii and the material constants. This study shows that waves in a solid body propagating under the influence of a superimposed magnetic field can differ significantly from those propagating in the absence of a magnetic field. The results have been verified numerically and represented graphically.  相似文献   

18.
压电、压磁材料球对称问题的通解   总被引:1,自引:1,他引:0  
研究压电、压磁材料在球坐标系下,不计体力、体电荷和体电流的情况下,由平衡方程、梯度方程、压电和压磁的本构方程导出应力、应变、位移、电位移、电场强度、电位势、磁感强度和磁位势各未知量的通解.考虑不同的边界条件,将其通解应用到应力、电学短路以及位移、电学开路和磁场分布的边界条件中,得到不同边界条件下问题的解。  相似文献   

19.
A stress–strain problem is solved for an infinite isotropic magnetically soft body containing an elliptic inclusion. It is assumed that the body is in an external magnetic field. The basic characteristics of the stress–strain state and the induced magnetic field are determined and their features at the inclusion are analyzed. Graphs are drawn for the total magnetoelastic and Maxwell stresses versus the ratio of the ellipse axes and the angle of dip, and tabular maximum stresses versus the magnetic induction and the magnetic properties of the material.  相似文献   

20.
The motion of a slender body made of magnetizable composite in a channel, along which coils producing a heterogeneous “traveling” magnetic field are mounted, is investigated. The coil axes are vertical and lie in the same plane. A mathematical model of a slender body made of viscoelastic magnetizable material is proposed. The magnetic force is calculated from a formula used in ferrohydrodynamics of magnetic fluids with equilibrium magnetization. The problem of the motion of this body in a channel in a vertical plane under the action of the magnetic field produced in an experimental setup is numerically solved. The dependence of the body velocity on the coil switching frequency is calculated and the effect of different problem parameters on the form of this dependence is studied. The theoretical results are compared with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号