首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz–van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential — particularly at microscopic and sub-microscopic resolutions — are needed.Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force–distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed.  相似文献   

2.
Investigations on platelets are essential to understanding the regulation of hemostasis and thrombosis. Activated platelets undergo dramatic conformational and morphological changes mediated by numerous plasma proteins. AFM techniques can combine high spatial resolution with measurements of the mechanical properties of platelet surfaces. Here, we demonstrate two-dimensional force mapping over a human platelet adsorbed on glass under physiological buffer. The best resolution of platelet membrane elasticity we obtained was at 15.6×15.6 nm2 pixel−1. In addition, quantitative information on platelet surface charge density was extracted from individual force curves with the aid of DLVO theory.  相似文献   

3.
Based on the classical DLVO (Derjaguin–Landau–Verwey–Overbeek) theory, the maximum coagulation of fine particle suspensions would be predicated to occur at the point of zero charge (pzc) of the particles. Although this prediction has been fairly accurate for isotropic particles, the mismatch has been frequently reported for suspensions of anisotropically-charged or charge-mosaic particles, such as talc. Followed by successful preparation of sufficiently smooth talc edge surfaces using the ultramicrotome method for the colloidal force measurements using atomic force microscope (AFM), the anisotropic surface charge properties, i.e., surface charge characteristics of basal planes and edge surfaces of talc at different pH values were determined by fitting the measured force profiles between the AFM tip and both basal plane and edge surfaces to the DLVO theory. The talc basal planes were found to carry a permanent negative charge, while the charge on its edge surfaces was highly pH-dependent. The AFM-derived surface (Stern) potential values of talc basal planes and edge surfaces enable us to calculate the interaction energy for various associations between different charge-mosaic surfaces. The attractive interaction between talc basal planes and edge surfaces was found to dominate the rheological behavior. This study clearly demonstrates the necessity of determining anisotropic surface charge characteristics to improve the understanding of rheological properties and hence to better control their process performance.  相似文献   

4.
We found that the force between glass surfaces measured with an atomic force microscope (AFM) has universal character in the short range, less than approximately 1 nm or about 3-4 water molecules, independent of solution conditions, that is, electrolyte ion size, charge and concentration and pH. Our results suggest that the excess DLVO force, obtained by subtracting the DLVO theory with a charge regulation model from the AFM force data, essentially does not change with the electrolytes Na, Ca, and Al, in the range of concentration from 10(-6) to 10(-2) M and the range of pH from 3.1 to 7.9. Single force curves for a glass-silica system in a 10-4 M aqueous NaCl solution at pH approximately 5.1 show oscillations with a period of about 0.25 nm, roughly the diameter of a water molecule. We postulate that the excess force between glass surfaces arises from a surface-induced solvent effect, from the creation of a hydrogen-bonding network at the surface level, rather than from a solvent-induced surface steric hindrance.  相似文献   

5.
Mean-field theory is used to derive criteria for the adsorption of a weakly charged polyelectrolyte molecule from salt solution onto surfaces patterned with charge and topography. For flat surfaces patterned with periodic arrays of charged patches, the adsorbed layer thickness predicted using mean-field theory and that found by Brownian dynamics simulations are in quantitative agreement in the strong-adsorption regime, which corresponds to sufficiently small kappa or sufficiently large |sigma(eff)q|, where kappa is the inverse Debye screening length, sigma(eff) is an effective surface charge density, and q is the charge on each segment of the polyelectrolyte. Qualitative agreement is obtained in the weak-adsorption regime, and for the case where surfaces are patterned with both charge and topography. For uniformly charged, sinusoidally corrugated surfaces, the theory predicts that the critical temperature required for adsorption can be greater than or less than the corresponding value for a flat surface depending on the relative values of kappa and the corrugation wave number. If the surface charge is also allowed to vary sinusoidally, then adsorption is predicted to occur only when the topography crests have a surface charge opposite to that of the polyelectrolyte. Surfaces patterned with rectangular indentations having charged bottoms which are separated by flat charged plateaus are investigated as well. Adsorption is predicted to occur even when the net surface charge is zero, provided that the plateaus have a charge opposite to that of the polyelectrolyte. If the charge on the plateaus and polyelectrolyte is the same, adsorption may still occur if electrostatic attraction from the indentation bottoms is sufficiently strong.  相似文献   

6.
The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential.  相似文献   

7.
Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.  相似文献   

8.
The purple membrane (PM) of Halobacterium salinarum contains a single type of protein, bacterio-rhodopsin (bR), which is a member of the seven alpha-helices transmembrane protein family. This protein is a photoactive proton pump, translocating one proton from the cytoplasmic to the extracellular side of the PM per photon absorbed. bR is found in trimers in PM, where they are assembled in a two-dimensional hexagonal lattice. We show herein that stable and functional films can be built in monolayers at the air-water interface by spreading aqueous suspensions of purified and native PM patches. In situ spectroscopic measurements at the air-water interface indicate that bR remains photoactive in this environment. Physical parameters of these PM films, such as protein molecular area, irreversible in-plane aggregation, z-axis orientation, film thickness, and surface roughness, were determined from surface pressure and surface potential-area isotherms, fluorescence spectroscopy, and X-ray reflectivity at the air-water interface. We find that PM do form organized monolayers of membranes, with an optimal packing density at a surface pressure of approximately 20 mN/m, although no preferential vectorial alignment, with respect to the plane normal to the membrane, can be detected from fluorescence quenching experiments.  相似文献   

9.
We have investigated the effect of well-defined nanoscale topography on the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicle adsorption and supported phospholipid bilayer (SPB) formation on SiO2 surfaces using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). Unilamellar lipid vesicles with two different sizes, 30 and 100 nm, were adsorbed on pitted surfaces with two different pit diameters, 110 and 190 nm, as produced by colloidal lithography, and the behavior was compared to results obtained on flat surfaces. In all cases, complete bilayer formation was observed after a critical coverage of adsorbed vesicles had been reached. However, the kinetics of the vesicle-to-bilayer transformation, including the critical coverage, was significantly altered by surface topography for both vesicle sizes. Surface topography hampered the overall bilayer formation kinetics for the smaller vesicles, but promoted SPB formation for the larger vesicles. Depending on vesicle size, we propose two modifications of the precursor-mediated vesicle-to-bilayer transformation mechanism used to describe supported lipid bilayer formation on the corresponding flat surface. Our results may have important implications for various lipid-membrane-based applications using rough or topographically structured surfaces.  相似文献   

10.
Electrostatic interactions between two surfaces as measured by atomic force microscopy (AFM) are usually analyzed in terms of DLVO theory. The discrepancies often observed between the experimental and theoretical behavior are usually ascribed to the occurrence of chemical regulation processes and/or to the presence of surface chemical or morphological heterogeneities (roughness). In this paper, a two-gradient mean-field lattice analysis is elaborated to quantifying double layer interactions between nonplanar surfaces. It allows for the implementation of the aforementioned sources of deviation from DLVO predictions. Two types of ion-surface interaction ensure the adjustment of charges and potentials upon double layer overlap, i.e., specific ionic adsorption at the surfaces and/or the presence of charge-determining ions for the surfaces considered. Upon double layer overlap, charges and potentials are adjusted via reequilibrium of the different ion adsorption processes. Roughness is modeled by grafting asperities on supporting planar surfaces, with their respective positions, shapes, and chemical properties being assigned at will. Local potential and charge distributions are derived by numerically solving the nonlinear Poisson-Boltzmann equation under the boundary conditions imposed by the surface profiles and regulation mechanism chosen. Finite size of the ions is taken into account. A number of characteristic situations are briefly discussed. It is shown how the surface irregularities are reflected in the Gibbs energy of interaction.  相似文献   

11.
12.
Buffer-induced alteration of the purple membrane electric dipole moments and electrokinetic charge was studied by electric light scattering and microelectrophoresis. The permanent dipole moment and electrophoretic mobility of purple membranes change in opposite direction in presence of 'P'- and 'N'-type buffer molecules, shown to produce 'positive' and 'negative' additional components to the bR light-induced charge displacement current. It is concluded that the two types buffer molecules distribute differently on the membrane surfaces, depending on their protonation state, as a result of different interaction with the membrane cytoplasmic and extracellular surfaces.  相似文献   

13.
The size, charge, and stability of colloidal suspensions of magnetic nanoparticles with narrow size distribution and grafted with poly(ethylene glycol)-silane of different molecular weights were studied in water, biological buffers, and cell culture media. X-ray photoelectron spectroscopy provided information on the chemical nature of the nanoparticle surface, indicating the particle surfaces consisted of a mixture of amine groups and grafted polymer. The results indicate that the exposure of the amine groups on the surface decreased as the molecular weight of the polymer increased. The hydrodynamic diameters correlated with PEG graft molecular weight and were in agreement with a distributed density model for the thickness of a polymer shell end-grafted to a particle core. This indicates that the particles obtained consist of single iron oxide cores coated with a polymer brush. Particle surface charge and hydrodynamic diameter were measured as a function of pH, ionic strength, and in biological buffers and cell culture media. DLVO theory was used to analyze the particle stability considering electrostatic, magnetic, steric, and van der Waals interactions. Experimental results and colloidal stability theory indicated that stability changes from electrostatically mediated for a graft molecular weight of 750 g/mol to sterically mediated at molecular weights of 1000 g/mol and above. These results indicate that a graft molecular weight above 1000 g/mol is needed to produce particles that are stable in a wide range of pH and ionic strength, and in cell culture media.  相似文献   

14.
The DLVO force and potential energy of interaction between microspheres and topographically and chemically heterogeneous surfaces in aqueous solution are computed using a modification of the surface element integration approach. The heterogeneous surface has an array of cylindrical pillars of varying height, diameter, and arrangement to model different nano-topographies. In agreement with previous studies, the nano-topography decreases the size of the potential energy barrier for unfavorable surfaces because the pillars limit the minimum separation distance. The influence of topography is significant even for pillars several nanometers high and is more pronounced if the surface potential of the pillar tops differs from that of the underlying surface. A new force- and energy-averaging model is introduced as a simple method to compute the mean interaction energy or force between the particle and a heterogeneous surface, which differs significantly from a mean-field approach based on the average or nominal surface potential. Small variations in topography are found to remove large energy barriers to colloidal deposition. These results help explain the increased attraction of patchy surfaces towards particles relative to expectations based on typical DLVO calculations, which is particularly significant for surfaces with adsorbed polyelectrolytes.  相似文献   

15.
Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reveals agglomeration of CBD adsorbed on cellulose surface. Despite an increase in surface charge owing to CBD binding to cellulose surface, force profiles are less repulsive for interactions involving, at least, one modified surface. Such changes are attributed to irregularity of the topography of protein surface and non-uniform distribution of surface charges on the surface of modified cellulose. Binding double CBD hybrid protein to cellulose surfaces causes adhesive forces at retraction, whereas separation curves obtained with cellulose modified with single CBD show small adhesion only at high ionic strength. This is possibly caused by the formation of the cross-links between cellulose surfaces in the case of double CBD.  相似文献   

16.
This work examined the biotin modification of bacteriorhodopsin (BR) in the purple membrane (PM). The results of flash kinetic absorption measurements showed that photocycle was maintained in biotinylated BR. Biotinylated BR also maintained its photoelectric activity, as indicated by the photoelectric response of the bilayer lipid membrane (BLM). Atomic force microscopy (AFM) of stretavidiin-bound biotin revealed that biotin molecules covered both surfaces of the, but the amount of biotinylated BR on the extracellular (EC) surface was markedly higher than on the cytoplasmic (CP) surface. Further studies showed that, after reaction with fluorescamine (FL), biotin labeling occurred only on the CP surface. These results are informative for future work on bioconjugation of BR as well as work on oriented assembly and the design of BR-based photoelectric devices.  相似文献   

17.
The structure and physicochemical properties of microbial surfaces at the molecular level determine their adhesion to surfaces and interfaces. Here, we report the use of atomic force microscopy (AFM) to explore the morphology of soft, living cells in aqueous buffer, to map bacterial surface heterogeneities, and to directly correlate the results in the AFM force-distance curves to the macroscopic properties of the microbial surfaces. The surfaces of two bacterial species, Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c, showing different macroscopic surface hydrophobicity were probed with chemically functionalized AFM tips, terminating in hydrophobic and hydrophilic groups. All force measurements were obtained in contact mode and made on a location of the bacterium selected from the alternating current mode image. AFM imaging revealed morphological details of the microbial-surface ultrastructures with about 20 nm resolution. The heterogeneous surface morphology was directly correlated with differences in adhesion forces as revealed by retraction force curves and also with the presence of external structures, either pili or capsules, as confirmed by transmission electron microscopy. The AFM force curves for both bacterial species showed differences in the interactions of extracellular structures with hydrophilic and hydrophobic tips. A. venetianus RAG-1 showed an irregular pattern with multiple adhesion peaks suggesting the presence of biopolymers with different lengths on its surface. R. erythropolis 20S-E1-c exhibited long-range attraction forces and single rupture events suggesting a more hydrophobic and smoother surface. The adhesion force measurements indicated a patchy surface distribution of interaction forces for both bacterial species, with the highest forces grouped at one pole of the cell for R. erythropolis 20S-E1-c and a random distribution of adhesion forces in the case of A. venetianus RAG-1. The magnitude of the adhesion forces was proportional to the three-phase contact angle between hexadecane and water on the bacterial surfaces.  相似文献   

18.
The light-driven proton pump bacteriorhodopsin (BR) embedded in a purple membrane (PM) from Halobacterium salinarum undergoes a series of conformational changes while transporting a proton from the cytoplasmic to the extracellular side over the course of the so-called photocycle. Wild-type BR variant D85T, where aspartic acid 85 is replaced by threonine, allows for the study of structural intermediates of this photocycle that are formed in a light-dependent manner in the wild-type and in thermal equilibrium by tuning the pH of the D85T purple membrane suspension. Especially the last and least studied O-intermediate of the photocycle of bacteriorhodopsin has caught recent attention. First AFM images of D85T under acidic conditions resembling wild-type BR under physiological conditions in the O-photocycle-intermediate are presented. Bacteriorhodopsins embedded in the strongly bent purple membranes were analyzed by single molecule force spectroscopy (SMFS) providing the first single molecule force spectra of BR in the O-intermediate. SMFS was further employed to determine the absolute sign of membrane curvature. Complementary electrostatic force microscopy (EFM) was performed to support PM side discrimination and determination of the bending direction. Bending of PM-D85T was analyzed in more detail providing further insight into the structure-function relationship of the bacteriorhodopsin proton pump as well as PM behaviour at the solid-liquid junction. Findings reported here are of general interest to the field of chemomechanical transducers.  相似文献   

19.
This article presents a study on the influence of the protocol used for immobilization of bacterial cells onto surfaces by mechanically trapping them into a filter. In this sense, the surface and structure of trapped cells are analyzed. Bacteria can be present solely or with extracellular polymeric substances (EPS). To test the behavior of the EPS layer duing the filtering process, different strains of a well-known EPS-producer bacteria (Staphylococcus epidermidis), which produce an extracellular matrix clearly visible in AFM images, have been used. Results show that this immobilization method can cause severe structural and mechanical deformation to the cell membrane. This altered mechanical state may possibly influence the parameters derived from AFM force curves (which are micro/nano-mechanical tests). Also, our results suggest that the EPS layer might move during the filtering process and could accumulate at the upper part of the cell, thus favoring distorted data of adhesion/pull-off forces as measured by an AFM tip, especially in the case of submicron-sized microbial cells such as bacteria.  相似文献   

20.
Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号