首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atomic force microscope has been used in the attractive (non-contact) force mode to produce images of individual nanometer-size clusters pre-formed in the gas phase and deposited on a wide variety of atomically-flat substrates. Using this technique, it is now possible to reliably image pre-formed clusters in their as-deposited positions. Studies of nanometer-size Au clusters supported on highly oriented pyrolitic graphite clearly show how the clusters are distributed across the scanned region. Cluster coverages inferred from atomic force studies are compared to those obtained from TEM studies of amorphous carbon grids simultaneously exposed to the same cluster beam.  相似文献   

2.
Drug particulate interactions in pressurized metered dose inhalers (pMDI) may lead to a decrease in aerosolization efficiency and subsequent efficacy in patient treatment. The interactions between salbutamol sulfate (commonly used in Ventolin pMDIs) and a series of pMDI canister materials were investigated using the atomic force microscope (AFM) colloid probe technique. Approximately 4000 individual force-distance curves were determined for a drug probe and three surfaces (10 x 10 mum areas) in situ, in a model propellant. The area under each force-distance curve was integrated to obtain separation energy values. Median separation energy values followed the rank order borosilicate glass > aluminum > PTFE, suggesting PTFE to be the most suitable canister coating.  相似文献   

3.
Bacteriorhodopsin (BR) patches with a diameter of 1 to 3 μm were investigated in their native state by atomic force microscopy (AFM) in buffer solution. The patches were immobilized deposited and investigated on mica in 150 mM KCl and 10 mM Tris-buffer at pH 8. Under this buffer condition they adsorb preferred with their extracellular side to the solid support mica. The structure of the two-dimensional light adapted crystals was resolved with an imaging force of about 100 pN up to a resolution of 13 Å. The topography of the surface gets smoother if an imaging force of 1000 pN was applied indicating that protruding structures are compressed. Upon illumination with white light, during imaging with a force of 200 pN, the surface structure of the BR lattice changed. The force- and light-induced structural changes were reversible.  相似文献   

4.
Colloidal forces between bitumen surfaces in aqueous solutions were measured with an atomic force microscope (AFM). The results showed a significant impact of solution pH, salinity, calcium and montmorillonite clay addition on both long-range (non-contact) and adhesion (pull-off) forces. Weaker long-range repulsive forces were observed under conditions of lower solution pH, higher salinity and higher calcium concentration. Lower solution pH, salinity and calcium concentration resulted in a stronger adhesion forces. The addition of montmorillonite clays increased long-range repulsive forces and decreased adhesion forces, particularly when co-added with calcium ions. The measured force profiles were fitted with extended DLVO theory to show the repulsive electrostatic double layer and attractive hydrophobic forces being the dominant components in the long-range forces between the bitumen surfaces. At a very short separation distance (less than 4–6 nm), a strong repulsion of steric origin was observed. The findings provide a fundamental understanding of bitumen emulsion stability and a mechanism of bitumen “aeration” in bitumen recovery processes from oil sands.  相似文献   

5.
Spectrin molecules extracted from human blood ceil membrane have been examined by atomic force microscopy (AFM) without using shadowing or staining procedures. A drop of the solution containing spectrin molecules was deposited on the freshly deaved mica substrate. After about 1 min, the residual solution was removed with a piece of filter paper. Afterwards the sample was imaged with a home-made atomic force microscope (AFM) in air in a constant force mode. The obtained AFM images revealed that the spectrin molecules prepared from the above procedures exhibit several kinds of structures as follows: (i) the compact rod-like spectrin heterodimers with a length of around 100 nm; (ii) bent or curved linear tetramers with a length of around 200 nm; (iii) somewhat curved spectrin hexamers, octomers or decamers with lengths of about 300, 400, or 500 nm; and (iv) high oligomers with a length above 1 000 nm.  相似文献   

6.
7.
A friction coefficient map of the surface of an immiscible polymer blend has been constructed using data obtained with the atomic force microscope. Spatially resolved friction coefficients, obtained from gradients of linear plots of frictional force versus applied load, were used to construct the map, with corresponding frictional forces being derived from lateral force data and the lateral spring constant. Values of the friction coefficient were confirmed using an Si3N4/Si3N4 couple, for which literature values were available. Excellent agreement with the literature was observed through the use of this method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Fracture surfaces of Suprasil 2, Herasil 2, AR glass and Duran glass rods have been studied by an atomic force microscope (AFM) in the contact mode. They could be characterized in the fracture mirror, the mist and the hackle zones. The RMS (root mean square) roughness in the fracture mirror of all glasses investigated increased with growing distance from the origin of the fracture. On several fracture surfaces of different glasses steps have been observed, due to fracture in shear mode. Furthermore changes in the fracture surfaces during scanning have also been observed. They are thought to stem from reactions of the freshly broken glass surface with the surrounding atmosphere and forces between the scanning tip and the soft surface.  相似文献   

9.
An atomic force microscope (AFM) has been used to study solvation forces at the solid-liquid interface between highly oriented pyrolytic graphite (HOPG) and the liquids octamethylcyclotetrasiloxane (OMCTS), n-hexadecane (n-C16H34), and n-dodecanol (n-C11H23CH2OH). Oscillatory solvation forces (F) are observed for various measured tip radii (Rtip=15-100 nm). It is found that the normalized force data, F/Rtip, differ between AFM tips with a clear trend of decreasing F/Rtip with increasing Rtip.  相似文献   

10.
《Microporous Materials》1994,2(3):205-215
An atomic force microscope (AFM) has been used to investigate the surface features of two samples of natural rectorite (from Arkansas) pillared with alumina clusters. AFM images of the surface of natural rectorite consists of a collection of bright spots in a well ordered hexagonal pattern with distances between nearest and lateral neighbors that, in contrast to montmorillonites, do not change after exchange with Al13 clusters and drying. When MgCl2 solutions are used to flocculate and separate the clay from its impurities, AFM images of the Mg-rectorite show on its surface spheroids spaced at about 9.0 and 13.0 Å, believed to be Mg2+ ions. After pillaring, atomic scale resolution images of the clay surface consist instead of hexagonal arrays of bright spots with nearest and lateral neighbors at 5.4 and 9.7 Å, in agreement with the geometry of the basal plane of 2:1 clay minerals. These dimensions are retained even after steaming at 760°C per 5 h. The clay rigidity has been attributed to the presence of mica-like layers in the pillared rectorite structure. The presence of alumina debris or clusters on the silicate layers was not observed in any image examined, suggesting that (as previously observed in pillared montmorillonites) the expended clay coking tendency during gas oil cracking can be attributed mainly to the strong Lewis-type acidity of the alumina pillars between its montmorillonite-like layers.  相似文献   

11.
When vanadyl naphthanate solutions in toluene are used to V-contaminate rectorite pillared with alumina clusters, V migration from the pillared clay microporous structure to the outer surface occurs during the thermal treatments used in catalyst preparation. The presence of V on the clay catalyst surface can be inferred from atomic force microscopy (AFM) images showing a marked decrease in surface roughness resulting from the presence of vanadia. AFM images show what are believed to be islands as well as stacks of vanadia layers on the clay surface. Irrespective of the thermal and hydrothermal treatments used to prepare these catalysts, atomic scale details of V-contaminated clay samples retain the surface parameters characteristic of the silicate layers in smectites. These results suggest that V on the clay surface is present as V=O groups attached to the three basal oxygens of the SiO4 units that form the clay silicate layers. These VO units form an hexagonal arrangement of white spots having next neighbor (dc) and lateral distance (dl) of 5.2 Å and 9.1 Å, respectively.  相似文献   

12.
The organization of bacteriorhodopsin (bR) within reconstituted purple membranes (RPM) was examined using atomic force microscopy (AFM). Five reconstituted species were examined: RPM 3 (bR/native polar lipids/dimyristoylphosphatidylcholine (DMPC) in a 1:9:14 molar ratio), RPM 4 (bR/native polar lipids in a 1:7 molar ratio), RPM 5 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycerol in a 1:3.5:6.1 molar ratio), RPM 6 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycero-3-phosphocholine in a 1:3.5:4.9 molar ratio), and RPM 7 (bR/native polar lipids/1,2-diphytanoyl-sn-glycero-3-[phospho-l-serine] in a 1:3.5:4.6 molar ratio). RPM 3 patches adsorbed onto mica exhibit domains of crystallized bR trimers arranged in a hexagonal packing structure, similar to those found in native purple membrane (NPM). These domains are enclosed by DMPC-rich regions. RPM 4 patches were observed to have larger domains of crystallized bR, with trimer orientation 30° different from that found in NPM. The bR-rich domains are enclosed by a large, protein-free, lipid-rich region. The topography of RPM 5 was difficult to resolve as the surface had no discernable patterns or structure. The topographies of RPM 6 and 7 were similar to that found in RPM 3 in that higher domains were formed within the patch adsorbed onto mica. They may contain protein-rich regions, but clear images of protein arrangement could not be obtained using AFM. This may be a result of imaging limitations or of the lack of organization of bR within these domains.  相似文献   

13.
An atomic force microscope (AFM) in conjunction with coated colloid probe and cell probe techniques has been used to measure directly the adhesive force between both the protein bovine serum albumin (BSA) and a yeast cell at two different membranes. These were polymeric ultrafiltration membranes of similar MWCO (4000 Da) but of different materials (ES 404 and XP 117, PCI Membrane Systems, UK). The XP 117 membrane is made from a mixture of polymers chosen with the aim of achieving low fouling. The BSA was adsorbed on a 5 μm silica colloid probe formed from a tipless V-shaped AFM cantilever. The cell probe was created by immobilising a single yeast cell on such a tipless cantilever. Measurements were made in 10−2 M NaCl solution. It was found for both protein and cell systems that the adhesive force at the ES 404 membrane was greater than that at the XP 117 membrane. The paper shows that coated colloid probe and cell probe techniques can provide useful means of directly quantifying the adhesion of biological materials to membrane surfaces.  相似文献   

14.
In this study we measured the adhesion forces between atomic force microscope (AFM) tips or particles attached to AFM cantilevers and different solid samples. Smooth and homogeneous surfaces such as mica, silicon wafers, or highly oriented pyrolytic graphite, and more rough and heterogeneous surfaces such as iron particles or patterns of TiO2 nanoparticles on silicon were used. In the first part, we addressed the well-known issue that AFM adhesion experiments show wide distributions of adhesion forces rather than a single value. Our experiments show that variations in adhesion forces comprise fast (i.e., from one force curve to the next) random fluctuations and slower fluctuations, which occur over tens or hundreds of consecutive measurements. Slow fluctuations are not likely to be the result of variations in external factors such as lateral position, temperature, humidity, and so forth because those were kept constant. Even if two solid bodies are brought into contact under precisely the same conditions (same place, load, direction, etc.) the result of such a measurement will often not be the same as that of the previous contact. The measurement itself will induce structural changes in the contact region, which can change the value for the next adhesion force measurement. In the second part, we studied the influence of humidity on the adhesion of nanocontacts. Humidity was adjusted relatively fast to minimize tip wear during one experiment. For hydrophobic surfaces, no signification change in adhesion force with humidity was observed. Adhesion force versus humidity curves recorded with hydrophilic surfaces either showed a maximum or continuously increased. We demonstrate that the results can be interpreted with simple continuum theory of the meniscus force. The meniscus force is calculated based on a model that includes surface roughness and takes into account different AFM tip (or particle) shapes by a two-sphere model. Experimental and theoretical results show that the precise contact geometry has a critical influence on the humidity dependence of the adhesion force. Changes in tip geometry on the sub-10-nm length scale can completely change adhesion force versus humidity curves. Our model can also explain the differences between earlier AFM studies, where different dependencies of the adhesion force on humidity were observed.  相似文献   

15.
Failure of implanted biomaterials is commonly due to nonspecific protein adsorption, which in turn causes adverse reactions such as the formation of fibrous capsules, blood clots, or bacterial biofilm infections. Current research efforts have focused on modifying the biomaterial interface to control protein reactions. Designing biomaterial interfaces at the molecular level, however, requires an experimental technique that provides detailed, dynamic information on the forces involved in protein adhesion. The goal of this study was to develop an atomic force microscope (AFM)-based technique to evaluate protein adhesion on biomaterial surfaces. In this study, the AFM was used to evaluate (i) protein-protein, (ii) protein-substrate, and (iii) protein-dextran interactions. The AFM was first used to measure the pull-off forces between bovine serum albumin (BSA) tips/BSA surfaces and BSA tips/anti-BSA surfaces. Results from these protein-protein studies were consistent with the literature. More importantly, the successful measurement of antibody-antigen binding interactions demonstrates that both the BSA and anti-BSA proteins retain their folded conformation and remain functional following our immobilization protocol. The AFM was also used to quantify the physiochemical interactions of proteins during adhesion to various self-assembled monolayers (SAMs) and dextran-coated substrates representative of potential biomaterial interface modifications. Dextran, which renders surfaces very hydrophilic, was the only surface coating that BSA protein did not adhere to. Hydrophobic interactions were not found to play a significant role in BSA adhesion. Therefore, the dextran molecules may resist protein adhesion by repulsive steric effects or hydration pressure. Moreover, the AFM-based methodology provides dynamic, quantitative information about protein adhesion at the nanoscale level.  相似文献   

16.
Aggrecan is a bottlebrush shaped macromolecule found in the extracellular matrix of cartilage. The negatively charged glycosaminoglycan (GAG) chains attached to its protein backbone give aggrecan molecules a high charge density, which is essential for exerting high osmotic swelling pressure and resisting compression under external load. In solution, aggrecan assemblies are insensitive to the presence of calcium ions, and show distinct osmotic pressure versus concentration regimes. The aim of this study is to investigate the effect of ionic environment on the structure of aggrecan molecules adsorbed onto well‐controlled mica surfaces. The conformation of the aggrecan was visualized using Atomic Force Microscopy. On positively charged APS mica the GAG chains of the aggrecan molecules are distinguishable, and their average dimensions are practically unaffected by the presence of salt ions. With increasing aggrecan concentration they form clusters, and at higher concentrations they form a continuous monolayer of conforming molecules. On negatively charged mica, the extent of aggrecan adsorption varies with salt composition. Understanding aggrecan adsorption onto a charged surface provides insight into its interactions with bone and implant surfaces in the biological milieu. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

17.
We report observations of localized growth on the (1014) surface of single-crystal CaCO3 in supersaturated solutions while scanning with the tip of an atomic force microscope (AFM). At low contact forces, AFM scanning strongly enhances deposition along preexisting steps. This enhancement increases rapidly with increasing solution supersaturation, and is capable of filling in multilayer etch pits to produce defect-free surfaces at the resolution of the AFM. Attempts to achieve similar deposition rates in the absence of scanning require high supersaturations that produce three-dimensional crystal nuclei, which are important defects. Localized deposition produced by drawing the AFM tip back and forth across step edges can produce monolayer deposits extending well over a micron from the scanned area. These tip-induced deposits provide convincing evidence for the importance of ledge diffusion in calcite crystal growth.  相似文献   

18.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

19.
In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed.  相似文献   

20.
The suitability of three common atomic force microscope (AFM) imaging modes for quantitative height and volume measurements on soft samples was investigated. The height and volume of rehydrated human metaphase chromosomes in liquid were measured using the contact mode, the tapping mode, and the force mapping mode. In both the contact and tapping modes, the measured height and volume strongly depended on the imaging setpoint that sets the imaging force. Measurement deviations up to 50% were observed. The force mapping mode, on the other hand, yielded reproducible height and volume measurements independent of the imaging force. It is therefore suggested that the force mapping mode should be used whenever the height or volume of soft samples need to be accurately determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号