首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computations of wall distances by solving a transport equation   总被引:1,自引:0,他引:1  
Computations of wall distances still play a key role in modern turbulence modeling. Motivated by the expense involved in the computation, an approach solving partial differential equations is considered. An Euler-like transport equation is proposed based on the Eikonal equation. Thus, the efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes equations can be reused. This article provides a detailed implementation of the transport equation in the Cartesian coordinates based on the code of computational fluid dynamics for missiles (MICFD) of Beihang University. The transport equation is robust and rapidly convergent by the implicit lower-upper symmetric Gauss-Seidel (LUSGS) time advancement and upwind spatial discretization. Geometric derivatives must also be upwind determined to ensure accuracy. Special treatments on initial and boundary conditions are discussed. This distance solving approach is successfully applied on several complex geometries with 1–1 blocking or overset grids.  相似文献   

2.
Computations of wall distances still play a key role in modern turbulence modeling. Motivated by the expense involved in the computation, an approach solving partial differential equations is considered. An Euler-like transport equation is proposed based on the Eikonal equation. Thus, the efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes equations can be reused. This article provides a detailed implementation of the transport equation in the Cartesian coordinates based on the code of computational fluid dynamics for missiles (MICFD) of Beihang University. The transport equation is robust and rapidly convergent by the implicit lower-upper symmetric Gauss-Seidel (LUSGS) time advancement and upwind spatial discretization. Geometric derivatives must also be upwind determined to ensure accuracy. Special treatments on initial and boundary conditions are discussed. This distance solving approach is successfully applied on several complex geometries with 1-1 blocking or overset grids.  相似文献   

3.
The paper presents a modified expression for the dissipation rate tensor ij in the second-moment closure models, which employs the dissipation flatness parameterE and the turbulenceRe number. The expression reproduced the distribution among the three diagonal components of ij in agreement with the direct numerical simulation of a plane channel flow ofMansour, Kim and Moin, 1988. Implemented in a low-Re-number differentialRe-stress model the relationship yielded predictions of dissipative components better than other models, albeit spoiled by still unsatisfactory modelling of the equation for the energy dissipation rate . on leave from Mainski Fakultet, University of Sarajevo, Bosnia Hercegovina.  相似文献   

4.
A low‐Reynolds number kε turbulence model is proposed that incorporates diffusion terms and modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional kε model, it requires no wall function/distance parameter that bridges the near‐wall integration. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A wall‐distance free k–ε turbulence model is developed that accounts for the near‐wall and low Reynolds number effects emanating from the physical requirements. The model coefficients/functions depend non‐linearly on both the strain rate and vorticity invariants. Included diffusion terms and modified Cε(1,2) coefficients amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the effect of wall distance coordinate on predicting variable property flows with two-equation turbulence models. Three of five different definitions of wall distance coordinate are employed: the wall-property definition, the integral-property definition and the local-property definition. Three different two-equation turbulence models that involve the wall distance coordinate are tested against the varying property flow: Superheated gas flow. The definition of wall distance coordinate affects the size of the viscous region. The wall-property based unit makes the wall distance to be the smallest and contributes to widen the viscous damping region, so that the skin friction factor and the Nusselt number is lowered. All the predictions with three different wall distance coordinates lie within less than 20% in the calculated Nusselt number.  相似文献   

7.
Highly nonlinear, turbulent, dynamic, fluid-structure interaction problems characterized by large structural displacements and deformations, as well as self-contact and topological changes, are encountered in many applications. For such problems, the Eulerian computational framework, which is often equipped with an embedded (or immersed) boundary method for computational fluid dynamics, is often the most appropriate framework. In many circumstances, it requires the computation of the time-dependent distance from each active mesh vertex of the embedding mesh to the nearest embedded discrete surface. Such circumstances include, for example, modeling turbulence using the Spalart-Allmaras or detached eddy simulation turbulence models and performing adaptive mesh refinement in order to track the boundary layer. Evaluating at each time step the distance to the wall is computationally prohibitive, particularly in the context of explicit-explicit fluid-structure time-integration schemes. Hence, this paper presents two complementary approaches for reducing this computational cost. The first one recognizes that many quantities depending on the wall distance are relatively insensitive to its inaccurate evaluation in the far field. Therefore, it simplifies a state-of-the-art algorithm for computing the wall distance accordingly. The second approach relies on an effective wall distance error estimator to update the evaluation of the wall distance function only when otherwise, a quantity of interest that depends on it would become tainted by an unacceptable level of error. The potential of combining both approaches for dramatically accelerating the computation of the wall distance is demonstrated with the Eulerian simulation of the inflation of a disk-gap-band parachute system in a supersonic airstream.  相似文献   

8.
9.
The economical prediction of a turbulent oscillatory isothermal flow at transitional Reynolds numbers is considered for an enclosure representative of an idealized electronics system. To assess the accuracy of numerical models, comparison is made with measurements. Normal wall distances, required in some turbulence models, are evaluated using a modified Poisson equation‐based technique. Solutions of the Poisson and fluid flow equations are accelerated using multi‐level schemes, giving valuable time‐savings. The Poisson equation‐based wall distance technique is shown to be effective. Zero‐ to two‐equation turbulence techniques are tested, including zonal and non‐linear eddy viscosity models. Of the nine models tested, the zonal models showed greatest potential. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
壁湍流相干结构和减阻控制机理   总被引:2,自引:0,他引:2  
许春晓 《力学进展》2015,45(1):201504
剪切湍流中相干结构的发现是上世纪湍流研究的重大进展之一,这些大尺度的相干运动在湍流的动力学过程中起重要作用,也为湍流的控制指出了新的方向.壁湍流高摩擦阻力的产生与近壁区流动结构密切相关,基于近壁区湍流动力学过程的减阻控制方案可以有效降低湍流的摩擦阻力,但是随着雷诺数的升高, 这些控制方案的有效性逐渐降低.近年来研究发现, 在高雷诺数情况下外区存在大尺度的相干运动,这种大尺度运动对近壁区湍流和壁面摩擦阻力的产生有重要影响,为高雷诺数湍流减阻控制策略的设计提出了新的挑战.该文将对壁湍流相干结构的研究历史加以简单的回顾,重点介绍近壁区相干结构及其控制机理、近年来高雷诺数外区大尺度运动的研究进展,在此基础上提出高雷诺数减阻控制研究的关键科学问题.   相似文献   

11.
We define a non-iterative transformation method for Blasius equation with moving wall or surface gasification. The defined method allows us to deal with classes of problems in boundary layer theory that, depending on a parameter, admit multiple or no solutions. This approach is particularly convenient when the main interest is on the behaviour of the considered models with respect to the involved parameter. The obtained numerical results are found to be in good agreement with those available in the literature.  相似文献   

12.
A generalized treatment for the wall boundary conditions relating to turbulent flows is developed that blends the integration to a solid wall with wall functions. The blending function ensures a smooth transition between the viscous and turbulent regions. An improved low Reynolds number k?ε model is coupled with the proposed compound wall treatment to determine the turbulence field. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. Computations with fine and coarse meshes of a few flow cases yield appreciably good agreement with the direct numerical simulation and experimental data. The method is recommended for computing the complex flows where computational grids cannot satisfy a priori the prerequisites of viscous/turbulence regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is foun  相似文献   

14.
With the invention of the Hexagonal Lattice Gas it was hoped that this new technique would facilitate direct simulation of turbulent flow. In the past years, however, we have learned about its barriers on numerical accuracy and computational efficiency, which cannot easily be taken. The work on lattice gases has evolved in the introduction of the lattice-Boltzmann scheme. With the appropriate refinements this scheme provides the essential balance between robustness and numerical accuracy and enables us to simulate three-dimensional time-dependent flows at Reynolds numbers up to 50000.  相似文献   

15.
Near-wall data for the strongly perturbed flow in a neutrally stable boundary layer encountering a steep, smooth, two-dimensional hill are presented. Observations were made on the centerplane of a water channel at thirteen stations relative to the hill by laser Doppler anemometry. The large reverse flow region that is formed on the lee of the hill was particularly scrutinized through seven measuring stations. Results are presented for the mean and turbulent properties of the flow. Wall shear stress was evaluated through fitting procedures that resorted to the near wall behavior of the velocity profile. Logarithmic fits as well as predictions through the Reynolds stress profiles are also presented.  相似文献   

16.
A modification of the Giesekus constitutive equation is derived by incorporating (approximately, via the Peterlin approximation) the finite extensibility of polymer molecules into dumbbell kinetic theory along with the anisotropic hydrodynamic drag suggested by Giesekus. The constitutive equation that is obtained retains much of the simplicity of Giesekus' constitutive equation, but it involves terms that are cubic in the stress as well as those that are quadratic. It is shown that the constitutive equation quantitatively describes the steady elongational viscosity of the IUPAC polymer melt A (including the strain softening of the melt), but it cannot describe the elongational and shear viscosities simultaneously. It is also shown that the constitutive equation satisfies the Lodge-Meissner relation for shear strains less than unity.  相似文献   

17.
剪切湍流大尺度相干结构的模式研究   总被引:3,自引:0,他引:3  
发展了一种计算剪切湍流大尺度相干结构的新模式.该模式的基础是认为大尺度相干结构为湍流场中流体脉动能量增长最快的那部分,且包含大部分的湍流脉动能量.在此基础上。通过对湍流相干能量方程的推演。建立了描述大尺度相干结构的特征控制方程,并应用Chebyshev多项式方法求得湍流相干能量的最大增长率在波数空间的分布,从而获得对应的大尺度相干结构.应用该模式研究了槽流和一自然对流中的大尺度相干结构,得到的近壁区流动结构与实验现象十分接近.  相似文献   

18.
In this paper,the same problem in ref.[1] is studied.The author’s solutionapproximately satisfies the whole fundamental equations (1.1)and(1.2)and the wholebound values conditions (1.3-1.5).But the Liu’s solution does not satisfy theequation of continuity(1.2).  相似文献   

19.
A simplified version of the v2f model is proposed that accounts for the distinct effects of low‐Reynolds number and near‐wall turbulence. It incorporates modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional v2f, it requires one additional equation (i.e. the elliptic equation for the elliptic relaxation parameter fµ) to be solved in conjunction with the k–ε model. The scaling is evaluated from k in collaboration with an anisotropic coefficient Cv and fµ. Consequently, the model needs no boundary condition on and avoids free stream sensitivity. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Fully-developed turbulent flow in a concentric annulus, r1/r2 = 0.5, Reh = 12,500, with the outer wall rotating at a range of rotation rates N = Uθ,wall/Ub from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re2  N2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号