首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental and numerical studies were carried out to investigate forced convection heat transfer and flow features around the downstream elliptic cylinder in four staggered cylinders in cross flow. The elliptic cylinders examined had an axis ratio (b/c) of 1:2, and they were arranged with zero angle of attack to the upstream flow. The present heat transfer measurements were obtained by heating only the downstream elliptic cylinder (test cylinder) under the condition of constant heat flux. The testing fluid was air and the Reynolds number based on the major axis length (c) was ranged from 4,000 to 45,570. The tested longitudinal spacing ratio (Sx/c) and the transversal spacing ratio (Sy/b) were in the ranges of 1.5 ≤ Sx/c ≤ 4.0 and 1.5 ≤ Sy/b ≤ 4.0, respectively. The air flow pattern and temperature fields around the four staggered elliptic cylinders were predicted by using CFD software package. Also, a flow visualization study was made to show the flow features around the elliptic cylinders. It was observed that Num of the downstream elliptic cylinder in four staggered cylinders was higher than that of three in-line cylinders for all tested spacing ratios and Reynolds numbers except for Re = 4,000. It was clear that, at lower Reynolds number values (Re < 14,100), the average Nusselt number of the downstream elliptic cylinder in three staggered arrangement was higher than that of the downstream cylinder in four staggered arrangement for all tested spacing ratios. On the other hand, at Re > 14,100, the tested elliptic cylinder in four staggered arrangement had the higher values of the average Nusselt number. Moreover, in four staggered arrangement, the maximum average Nusselt number enhancement ratio (average Nusselt number of the tested downstream cylinder/average Nusselt number of a single elliptic cylinder) was found to be about 2.0, and was obtained for spacing ratios of Sx/c = 2.5, Sy/b = 2.5 and at Re = 32,000. Finally, the average Nusselt number of the tested cylinder in four staggered arrangement was correlated in terms of Reynolds number and cylinder spacing ratios.  相似文献   

2.
This paper presents the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement. Spacing between the cylinders is five widths of the cylinder and the Reynolds number ranges from 1 to 200, Pr=0.71. Both steady and unsteady incompressible laminar flow in the 2D regime are performed with a finite volume code based on the SIMPLEC algorithm and non‐staggered grid. A study of the effects of spatial resolution and blockage on the results is provided. In this study, the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed. In addition, the global quantities such as pressure and viscous drag coefficients, RMS lift and drag coefficients, recirculation length, Strouhal number and Nusselt number are determined and discussed for various Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical investigation of the two-dimensional laminar flow past two ro- tating circular cylinders in the tandem arrangement is conducted by the lattice Boltzmann method. The numerical strategy is used for dealing with curved and moving boundaries of the second-order accuracy for velocity and temperature fields. The effects of various rotational speed ratios and gap spacing are studied with the Reynolds number of 100 and the Prandtl number of 0.71. A varied range of rotational speed ratios are investigated for four different gap spacing, i.e., 3.0, 1.5, 0.7, and 0.2. The results show that, for the first cylinder, the lift and drag coefficients for large gap spacing are similar to those for a single cylinder; for the second cylinder, the lift coefficient descends with the increase in the angular velocity for all gap spacing, while the drag coefficient ascends except for the gap spacing of 3.0. The results of the averaged periodic Nusselt number on the surface of the cylinders show that, for small distances between the cylinders and low angular velocities, conduction is a dominant mechanism of heat transfer, but for large distances and high angular velocities, convection is the main mechanism of heat transfer.  相似文献   

4.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

5.
A two-dimensional numerical study is carried out to understand the influence of cross buoyancy on the vortex shedding processes behind two equal isothermal square cylinders placed in a tandem arrangement at low Reynolds numbers. The spacing between the cylinders is fixed with five widths of the cylinder dimension. The flow is considered in an unbounded medium, however, fictitious confining boundaries are chosen to make the problem computationally feasible. Numerical calculations are performed by using a finite volume method based on the PISO algorithm in a collocated grid system. The range of Reynolds number is chosen to be 50–150. The flow is unsteady laminar and two-dimensional in this Reynolds number range. The mixed convection effect is studied for Richardson number range of 0–2 and the Prandtl number is chosen constant as 0.71. The effect of superimposed thermal buoyancy on flow and isotherm patterns are presented and discussed. The global flow and heat transfer quantities such as overall drag and lift coefficients, local and surface average Nusselt numbers and Strouhal number are calculated and discussed for various Reynolds and Richardson numbers.  相似文献   

6.
Staggered arrays of short cylinders, known as pin?Cfins, are commonly used as a heat exchange method in many applications such as cooling electronic equipment and cooling the trailing edge of gas turbine airfoils. This study investigates the near wake flow as it develops through arrays of staggered pin fins. The height-to-diameter ratio was unity while the transverse spacing was kept constant at two cylinder diameters. The streamwise spacing was varied between 3.46 and 1.73 cylinder diameters. For each geometric arrangement, experiments were conducted at Reynolds numbers of 3.0e3 and 2.0e4 based on cylinder diameter and velocity through the minimum flow area of the array. Time-resolved flowfield measurements provided insight into the dependence of row position, Reynolds number, and streamwise spacing. Decreasing streamwise spacing resulted in increased Strouhal number as the near wake length scales were confined. In the first row of the bundle, low Reynolds number flows were mainly shear-layer-driven while high Reynolds number flows were dominated by periodic vortex shedding. The level of velocity fluctuations increased for cases having stronger vortex shedding. The effect of streamwise spacing was most apparent in the reduction of velocity fluctuations in the wake when the spacing between rows was reduced from 2.60 diameters to 2.16 diameters.  相似文献   

7.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar flow and heat transfer characteristics of air around three isothermal heated horizontal cylinders in a staggered tube bank and around four isothermal heated horizontal cylinders in an in line tube bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface, including the zone beyond the separation point. The predicted values of total drag, pressure drag and friction drag coefficients, average Nusselt number, and the plots of velocity flow fields and isotherms are also presented.  相似文献   

8.
Vortex induced vibrations of two equal-sized cylinders in tandem and staggered arrangement placed in uniform incompressible flow is studied. A stabilized finite element formulation is utilized to solve the governing equations. The Reynolds number for these 2D simulations is 1000. The cylinders are separated by 5.5 times the cylinder diameter in the streamwise direction. For the staggered arrangement, the cross-flow spacing between the two cylinders is 0.7 times the cylinder diameter. In this arrangement, the downstream cylinder lies in the wake of the upstream one and therefore experiences an unsteady inflow. The wake looses its temporal periodicity, beyond a few diameters downstream of the front cylinder. The upstream cylinder responds as an isolated single cylinder while the downstream one undergoes disorganized motion. Soft-lock-in is observed in almost all the cases.  相似文献   

9.
This paper presents a two-dimensional numerical study for mixed convection in a laminar cross-flow with a pair of stationary equal-sized isothermal cylinders in tandem arrangement confined in a channel. The governing equations are solved using the control volume method on a nonuniform orthogonal Cartesian grid, and the immersed boundary method is employed to identify the cylinders placed in the flow field. The numerical scheme is first validated against standard cases of symmetrically confined isothermal circular cylinders in plane channels, and grid convergence tests were also examined. The objective of the present study was to investigate the influence of buoyancy and the blockage ratio constraint on the flow and heat transfer characteristics of the immersed cylinder array. Using a fixed Reynolds number based on cylinder diameter of \(Re_{D} = 200\), a fixed value of the Prandtl number of \(Pr = 7\), and a blockage ratio of \(D/H = 0.2\), all possible flow regimes are considered by setting the longitudinal spacing ratio (\(\sigma = L/D\)) between the cylinder axes to 2, 3, and 5 for values of the buoyancy parameter (Richardson number) in the range \(-1\le Ri\le 4\). The interference effects and complex flow features are presented in the form of mean and instantaneous velocity, vorticity, and temperature distributions. The results demonstrate how the buoyancy, spacing ratio, and wall confinement affect the wake structure and vortex dynamics. In addition, local and average heat transfer characteristics of both cylinders are comprehensively presented for a wide range in the parametric space.  相似文献   

10.
Fluid flow and heat transfer of mixed convection from a constant wall temperature circular cylinder in zero-mean velocity oscillating cooling flows have been simulated based on the projection method with two dimensional exponential stretched staggered cylindrical meshes. Cycle mean temperature and secondary streaming are obtained by the method of partial sums of the Fourier series. Present numerical results are validated by comparing the heat transfer results of free convection and the secondary streaming of pure oscillating flow over a circular cylinder to published experimental and numerical results. The complete structures of the cycle mean temperature and secondary streaming patterns are provided by numerical simulations over wide ranges of the Reynolds number, the Keulegan–Carpenter number and the Richardson number. Based on turning points of the curves of the overall Nusselt numbers versus Reynolds numbers and the characteristics of the cycle averaged temperature and flow patterns, the heat transfer can be divided into three linear regimes (conduction, laminar convection, and turbulent convection dominated regimes) and two non-linear transition regimes. The effects of wave directions, amplitudes, frequencies, and buoyancy forces on the enhancement of heat transfer are also investigated. The effective ranges of the governing parameters for heat transfer enhancement are identified.  相似文献   

11.
A stabilized finite element formulation is employed to study incompressible flows past a pair of cylinders at Reynolds numbers 100 and 1000 in tandem and staggered arrangements. Computations are carried out for three sets of cylinder arrangements. In the first two cases the cylinders are arranged in tandem and the distance between their centres is 2·5 and 5·5 diameters. The third case involves the two cylinders in staggered arrangement. The distance between their centres along the flow direction is 5·5 diameters, while it is 0·7 diameter in the transverse direction. The results are compared with flows past a single cylinder at corresponding Reynolds numbers and with experimental observations by other researchers. It is observed that the qualitative nature of the flow depends strongly on the arrangement of cylinders and the Reynolds number. In all cases, when the flow becomes unsteady, the downstream cylinder, which lies in the wake of the upstream one, experiences very large unsteady forces that may lead to wake-induced flutter. The Strouhal number, based on the dominant frequency in the time history of the lift coefficient, for both cylinders attains the same value. In some cases, even though the near wake of the two cylinders shows temporal periodicity, the far wake does not. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

13.
Two circular cylinders in cross-flow: A review   总被引:1,自引:0,他引:1  
Pairs of circular cylinders immersed in a steady cross-flow are encountered in many engineering applications. The cylinders may be arranged in tandem, side-by-side, or staggered configurations. Wake and proximity interference effects, which are determined primarily by the longitudinal and transverse spacing between the cylinders, and also by the Reynolds number, have a strong influence on the flow patterns, aerodynamic forces, vortex shedding, and other parameters. This paper reviews the current understanding of the flow around two “infinite” circular cylinders of equal diameter immersed in a steady cross-flow, with a focus on the near-wake flow patterns, Reynolds number effects, intermediate wake structure and behaviour, and the general trends in the measurements of the aerodynamic force coefficients and Strouhal numbers. A primary focus is on the key experimental and numerical studies that have appeared since the last major review of this subject more than 20 years ago.  相似文献   

14.
串列双圆柱绕流问题的数值模拟   总被引:8,自引:0,他引:8  
刘松  符松 《计算力学学报》2000,17(3):260-266
本文运用有限体积方法,对绕串列放置的双圆柱的二维不可压缩流动进行了数值计算。为研究两圆柱不同间距对圆柱相互作用和尾流特征的影响,选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)在1.5~5.0之间每隔0.5共八个有代表性的间距进行了计算模拟。计算均在Re=200条件下进行。计算结果表明:对该绕流问题,流动特征在很大程度上取决于间距的大小。且间距存在一临界值,间距比从小于临界值变化到大于临界  相似文献   

15.
Transient numerical simulations of fluid flow and heat transfer over a bank of flat tubes have been carried for both in-line and staggered configurations for the following boundary conditions: (a) isothermal and (b) isoflux. The effect of Reynolds number, Prandtl number, length ratio, and the height ratio, on the Nusselt number, and the dimensionless pressure drop are elucidated. Correlations are proposed for both pressure drop and Nusselt number and optimum configurations have been determined.  相似文献   

16.
This work aims to investigate the dependence of flow classification on the Reynolds number (Re) for the wake of two staggered cylinders. The Re examined ranges from 1.5×103 to 2.0×104. The pitch ratio, P=P/d examined is 1.2–6.0 (d is the cylinder diameter), and angle (α) is 0–90°, where P is the center-to-center spacing between two cylinders and α is the angle between the incident flow and the line through the cylinder centers. Two single hotwires were used to measure simultaneously the fluctuating streamwise velocities (u) in the vortex streets generated by the two cylinders. The power spectral density functions and the Strouhal numbers were then obtained from the u signals, based on which the flow structure pattern or mode could be determined. Over two hundred configurations of two staggered cylinders have been examined for each Re. It is found that Re has an appreciable effect on the dependence of the flow mode on P and α. The observation is connected to the Re effect on the generic features of a two-cylinder wake such as flow separation, boundary layer thickness, gap flow deflection and vortex formation length.  相似文献   

17.
Passive wake control behind a circular cylinder in uniform flow is studied by numerical simulation for ReD ranging from 80 to 300. Two small control cylinders, with diameter d/D=1/8, are placed at x/D=0.5 and y/D=±0.6. Unlike the 1990 results of Strykowski and Sreenivasan, in the present study, the vortex street behind the main cylinder still exists but the fluctuating lift and the form drag on the main cylinder reduces significantly and monotonously as the Reynolds number increases from 80 to 300. Obstruction of the control cylinders to the incoming flow deflects part of the fluid to pass through the gap between the main and control cylinders, forming two symmetric streams. These streams not only eliminate the flow separation along the rear surface of the main cylinder, they also merge toward the wake centerline to create an advancing momentum in the immediate near-wake region. These two effects significantly reduce the wake width behind the main cylinder and lead to monotonous decrease of the form drag as the Reynolds number increases. As the Reynolds number gets higher, a large amount of the downstream advancing momentum significantly delays the vortex formation farther downstream, leading to a more symmetric flow structure in the near-wake region of the main cylinder. As the Reynolds number increases from 80 to 300, both increasing symmetry of the flow structure in the near-wake and significant delay of the vortex formation are the main reasons for the fluctuating lift to decrease monotonously.  相似文献   

18.
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.  相似文献   

19.
Laminar free convection heat transfer from two vertical arrays of five isothermal cylinders separated by flow diverters is studied experimentally using a Mach-Zehnder interferometer. The width of flow diverters is kept constant to two-cylinder diameters and the cylinders vertical center-to-center spacing is equal to three-cylinder diameter. Effect of the ratio of the horizontal spacing between two cylinder arrays to their diameter (Sh/D) on heat transfer from the cylinders is investigated for various Rayleigh numbers. The experiments are performed for Sh/D = 2-4, and the Rayleigh number based on the cylinder diameter ranging from 103 to 3 × 103. It is observed that for small Sh/D ratios, the flow diverters have a negative effect on the total rate of heat transfer from the arrays; while by increasing the horizontal center to center spacing, they tend to enhance the overall cooling rate of the array. Moreover, increasing Ra and Sh/D generally results in a higher average Nusselt number for each cylinder in the array.  相似文献   

20.
钝头体壁面的摩阻和热流分布规律不同,平板流动中的雷诺比拟关系在钝头体壁面失效. 文章在前期高超声速广义雷诺比拟理论研究工作的基础上,利用数值仿真的方法对不同外形和来流参数条件下的钝头体广义雷诺比拟关系开展进一步研究. 通过建立钝头体绕流边界层的理论分析模型,得到了钝头体壁面雷诺比拟系数的线性分布预示公式. 采用数值求解 N-S 方程的方法,计算了圆柱和幂次体壁面的摩阻和热流以及二者之间的比拟系数. 通过与前期数值和理论结果对比,以及计算收敛性和网格无关性检验,对数值方法进行了验证. 通过在不同雷诺数 ($Re_\infty = 3.98\times 10^2 \sim 1.59\times 10^6$) 和马赫数 ($M_\infty = 3\sim 12$) 条件下的计算结果对比分析雷诺比拟系数的分布,总结了钝头体中广义雷诺比拟关系受外形和来流条件的影响,评估了广义雷诺比拟理论的适用性. 研究发现,在较高雷诺数条件下,离驻点较远的下游 ($\theta > 60^\circ$) 部位,雷诺比拟系数的分布不同程度地偏离理论预示的线性规律. 相比于圆柱外形,幂次体壁面的雷诺比拟系数分布的线性规律相对较好,其分布斜率略低于圆柱壁面的结果. 研究表明,如果针对实际外形和雷诺数进行适当修正,可以提高广义雷诺比拟关系的预示精度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号