首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Protein‐film square‐wave voltammetry of uniformly adsorbed molecules of redox lipophilic enzymes is applied to study their electrochemical properties, when a reversible follow‐up chemical reaction is coupled to the electrochemically generated product of enzyme's electrode reaction. Theoretical consideration of this so‐called “surface ECrev mechanism” under conditions of square‐wave voltammetry has revealed several new aspects, especially by enzymatic electrode reactions featuring fast electron transfer. We show that the rate of chemical removal/resupply of electrochemically generated Red(ads) enzymatic species, shows quite specific features to all current components of calculated square‐wave voltammograms and affects the electrode kinetics. The effects observed are specific for this particular redox mechanism (surface ECrev mechanism), and they got more pronounced at high electrode kinetics of enzymatic reaction. The features of phenomena of “split net‐SWV peak” and “quasireversible maximum”, which are typical for surface redox reactions studied in square‐wave voltammetry, are strongly affected by kinetics and thermodynamics of follow‐up chemical reaction. While we present plenty of relevant voltammetric situations useful for recognizing this particular mechanism in square‐wave voltammetry, we also propose a new approach to get access to kinetics and thermodynamics of follow‐up chemical reaction. Most of the results in this work throw new insight into the features of protein‐film systems that are coupled with chemical reactions.  相似文献   

2.
Large number of lipophilic substances, whose electrochemical transformation takes place from adsorbed state, belong to the class of so‐called “surface‐redox reactions”. Of these, especially important are the enzymatic redox reactions. With the technique named “protein‐film voltammetry” we can get insight into the chemical features of many lipophilic redox enzymes. Electrochemical processes of many redox adsorbates, occurring at a surface of working electrode, are very often coupled with chemical reactions. In this work, we focus on the application of square‐wave voltammetry (SWV) to study the theoretical features of a surface electrode reaction coupled with two chemical steps. The starting electroactive form Ox(ads) in this mechanism gets initially generated via preceding chemical reaction. After undergoing redox transformation at the working electrode, Ox(ads) species got additionally regenerated via chemical reaction of electrochemically generated product Red(ads) with a given substrate Y. The theory of this so‐called surface CEC’ mechanism is presented for the first time under conditions of square‐wave voltammetry. While we present plenty of calculated voltammograms of this complex electrode mechanism, we focus on the effect of rate of regenerative (catalytic) step to simulated voltammograms. We consider both, electrochemical reactions featuring moderate and fast electron transfer. The obtained voltammetric patterns are very specific, having sometime hybrid‐like features of voltammograms as typical for CE, EC and EC’ mechanisms. We give diagnostic criteria to recognize this complex mechanism in SWV, but we also present hints to access the kinetic and thermodynamic parameters relevant to both chemical steps, and the electrochemical reaction, too. Indeed, the results presented in this work can help experimentalists to design proper experiments to study chemical features of important lipophilic systems.  相似文献   

3.
The electrochemical methods cyclic and square‐wave voltammetry were applied to develop an electroanalytical procedure for the determination of N‐nitrosamines (N‐nitrosopyrrolidine, N‐nitrosopiperidine and N‐nitrosodiethylamine) in aqueous solutions. Cyclic voltammetry was used to evaluate the electrochemical behaviors of N‐nitrosamines on boron‐doped diamond electrodes. It was observed an irreversible electrooxidation peak located in approximately 1.8 V (vs. Ag/AgCl) for both N‐nitrosamines. The optimal electrochemical response was obtained using the following square‐wave voltammetry parameters: f=250 Hz, Esw=50 mV and Es=2 mV using a Britton–Robinson buffer solution as electrolyte (pH 2). The detection and quantification limits determined for total N‐nitrosamines were 6.0×10?8 and 2.0×10?7 mol L?1, respectively.  相似文献   

4.
Use of a square‐wave potential program for time‐dependent amperometric detection of analyte zones in capillary electrophoresis (CE) is described. Electrochemical detection for CE requires that the separation field be isolated from that of the electrochemical detection. This is generally done by physically separating the CE separation field from that of the detection. By applying a time variant potential program to the detection electrode, the detector current has a time dependence that can be used to help isolate the electrochemical detection current from that of the separation. When using a 20 μm inner‐diameter capillary, we find that a square‐wave potential program decreases the RMS baseline current from 4.5×10?10 A, found with a constant potential amperometric detection, to 1.1×10?10 A when using a square‐wave potential program. With a 75 μm inner‐diameter capillary, the improvement is even more dramatic, from 2.3×10?9 A with amperometric detection to 2.06×10?10 A when using a 1 Hz square‐wave potential program. When not using the time‐dependent detection with the 75 μm capillary, the analyte zones were beneath the S/N for the system and not detected. With the square‐wave potential program and time‐dependent detection, however, the analyte zones for an electrokinetic injection of 200 μM solution of 2,3‐dihydroxybenzoic acid were observed with the 75 μm inner‐diameter capillary. The improvement in the ability to discriminate the analytical signal from the background found experimentally is consistent with modeling studies.  相似文献   

5.
We show that, in difference to previously applied electrochemical methods working with stationary electrodes, square wave voltammetry produces well‐developed peaks IISW (specific for dsDNA) and IIISW yielded by ssDNA at hanging mercury drop electrode (HMDE) and solid amalgam electrodes (SAEs). Using these peaks various kinds of DNA structural transitions can be studied, including unwinding of dsDNA at negatively charged electrode surfaces. The sensitivity of the DNA analysis is much better than that obtained with guanine oxidation signals at carbon electrodes. Both carbon electrodes and SAEs appear attractive as transducers in label‐free RNA and DNA sensors.  相似文献   

6.
7.
Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.  相似文献   

8.
Surface reactions of uniformly adsorbed redox molecules at working electrode surface are seen as adequate models to studying chemical reactivity of many lipophilic enzymes. When considered under pulse voltammetric techniques, these systems show several uncommon features, whose origin is still not completely clear. The phenomena of “quasireverible maximum”, “splitting” of the net peak in square‐wave voltammetry, and the very steep descent of Faradaic currents of simple surface redox reactions exhibiting fast electron transfer are just some of the features that make these systems quite interesting for further elaborations. In this work, we present a set of theoretical calculations under conditions of square‐wave voltammetry in order try to explain some of aforementioned phenomena. The major goal of our work is to get insight to some voltammetric and chrono‐amperometric features of two considered surface reactions, i. e. (1) the “simple” surface redox reaction, and (2) surface redox reaction coupled to follow‐up irreversible chemical reaction of electrochemically generated redox species (or surface ECirr). We focus on the role of created Red(ads) (here in the reduction pulses only) to the current components of calculated square‐wave voltammograms exhibiting fast electrode reaction. We show that the irreversible chemical removal of electrochemically generated Red(ads) species, created in the potential pulses where half‐reaction of reduction Ox(ads)+ne‐?→Red(ads) is “defined” to take place, causes significant increase of all square‐wave current components. The results presented in this work show how complex the chrono‐amperometric features of surface redox reactions under pulse voltammetric conditions might be. In addition, we point out that both half reactions of a given simple surface redox process can occur, at both, “only reduction” and “only oxidation” potential pulses in square‐wave voltammetry. This, in turn, contributes to the occurrence of many phenomena observed in simple protein‐film voltammetry reactions. The effects of chemical reaction rate to the features of calculated square‐wave voltammograms of surface ECirr systems with fast electrode reaction are reported for the first time in this work.  相似文献   

9.
Electrochemical oxidation of sodium copper chlorophyllin (CHL) has been investigated at a glassy‐carbon (GC) and paraffin‐impregnated graphite electrode (PIGE) using square‐wave voltammetry (SWV). Square‐wave voltammograms of other two chlorin‐type compounds, namely chlorin e6 and chlorophyll a, have been studied as well. The measurements were performed in the pH range between 7 and 11. The square‐wave frequency was changed between 8 and 1000 Hz. The oxidation of studied chlorins is a complex, pH‐independent, reversible or quasireversible process, followed by the chemical transformation of the product. The product of the EC reaction of CHL is an electroactive π? π dimer, which strongly adsorbs on the electrode surface and undergoes further oxidation at more positive potential. The electrooxidation of the adsorbed dimer is a pH‐independent irreversible process with the formation of an electroinactive film. The voltammetric behaviour of chlorin e6 on PIGE was qualitatively similar to that of CHL. The SW voltammograms of chlorin e6 recorded on GCE and of chlorophyll a recorded on PIGE consisted of only one peak. The SW responses of studied compounds strongly depend on the stabilization of the reaction intermediate by adsorption to the electrode surface.  相似文献   

10.
This work presents the fabrication of Nafion (Nf) or Nafion/Multiwalled Carbon Nanotubes (Nf/MWCNTs) modified gold microarray (Au‐µA) and macro‐(Au‐M)electrode biosensors. The surface morphologies of the above electrodes were examined using SEM. The catalytic properties of the above electrodes towards dopamine were tested using square wave voltammetric technique. The Nf/MWCNT/Au‐µA electrode exhibited a wide range (0.1–1000 nM) of linearity among the other electrodes. The LOD of Nf/MWCNT/Au‐µA electrode was 50 pM for dopamine in the presence of 5000 µM ascorbic acid. Therefore, the Nf/MWCNT/Au‐µA biosensor was applied for the determination of dopamine in human serum.  相似文献   

11.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

12.
This work reported a comparative analysis of the amperometric responses of antigen‐antibody reactions on two stable chiral surfaces which were modified with 1,2‐diphenylethylenediamine enantiomers. Alpha‐fetoprotein antibody and antigen (anti‐AFP and AFP) were selected as model systems. First, (1R,2R)‐1,2‐diphenylethylenediamine or (1S,2S)‐1,2‐diphenylethylenediamine was modified on the gold surface of the electrode through amide linkage to construct chiral surfaces. Then, anti‐AFP was immobilized on the chiral electrode surface by electrostatic and hydrogen bonding interactions. The electrochemical characteristics of the modified electrodes were studied via cyclic voltammetry. The selective current responses of antigen‐antibody reactions on chiral electrode surfaces for different incubation time and varying AFP concentrations were monitored. The antigen‐antibody reactions were greatly influenced by the chirality of 1,2‐diphenylethylenediamine enantiomers, and the amperometric responses obtained from the (1S,2S)‐1,2‐diphenylethylenediamine modified electrode was obviously stronger than that from the (1R,2R)‐1,2‐diphenylethylenediamine modified electrode. Such work may not only offer valuable reference to the research of chiral drugs, but also help to comprehend the high selectivity of chiral molecular species in biosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility.  相似文献   

14.
An electrochemical dsDNA nanobiosensor was fabricated using amino‐functionalized multi walled carbon nanotubes modified glassy carbon electrode (NH2fMWCNTs/GCE) for the sensitive detection of DNA bases and electrochemical monitoring of drug‐DNA interaction. The influence of functional groups on MWCNT was studied by MWCNT functionalized with NH2 (NH2fMWCNTs) and COOH (COOHfMWCNT) groups based on the signal of DNA bases. The modified electrodes were characterized by scanning electron microscopy. One layer of calf thymus double stranded deoxyribonucleic acid (ct‐dsDNA) was immobilized onto the NH2fMWCNTs/GCE (dsDNA/NH2fMWCNTs/GCE). The dsDNA/NH2fMWCNTs/GCE were used to investigate the interaction between the dsDNA and the anticancer drug gemcitabine by differential pulse voltammetry in acetate buffer of pH 4.70. For the confirmation of interaction, the lowering in intensity of the current signals of guanine and adenine was considered as an indicator. Electrochemical impedance spectroscopy studies were performed for the comparison of the modified surfaces. In order to define and visualize the interaction mechanism between gemcitabine and dsDNA/NH2fMWCNTs/GCE at the molecular level, in silico methods including docking and molecular dynamics simulations were employed.  相似文献   

15.
Determination of berberine, an isoquinoline plant alkaloid, with antibacterial, antiparasitic, antifungal, hypotensive and antitumoral effects, was proposed by introducing square wave voltammetry on boron‐doped diamond electrode. At optimized experimental parameters, in Britton‐Robinson buffer solution pH 5 berberine provides 3 oxidation peaks (+0.63; +1.14 and +1.34 V) and one reduction (+0.15 V) (vs. Ag/AgCl electrode), with good repeatability (relative standard deviation of 2.6 % and 1.9 % for 8 measurements at 0.5 and 10 µM concentration level, respectively). Calibration curve was linear in wade linear range from 0.1 to 50 µM with limit of detection of 0.04 µM. The proposed procedure was successfully applied for the determination of berberine in seed extract from Argemone mexicana with satisfactory recovery (102–102.6 %). The developed method may represent a sensitive alternative to highly toxic mercury electrodes, modified electrodes and chromatographic methods.  相似文献   

16.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   

17.
Preparation and characterization of electrodes suitable for determination of glutathione is reported in this study. For this poly‐m‐aminophenol (PmAP), poly‐o‐aminophenol, and poly‐p‐aminophenol were electrochemically deposited from aqueous solution on the surface of glassy carbon (GC) electrode by potential cycling in the range of +0.2–+1.0 V. The modified GC electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, contact angle measurement and ellipsometry. It was found that poly‐m‐aminophenol modified GC electrode (PmAP/GC‐electrode) is most suitable for electroanalytical determination of glutathione. An electroanalytical system for the determination of glutathione based on the PmAP/GC‐electrode was developed. The analytical system was characterized by low limit of detection, good stability, high sensitivity and wide linear detection range.  相似文献   

18.
The synergistic use of Nafion polymeric membrane and in situ electrodeposited bismuth film is a worthwhile strategy to develop electrochemical sensors for the detection of Cd2+ and Pb2+. However, Nafion thin films morphological and conductivity properties have a strong dependence on the environmental conditions, such as relative humidity and temperature, while the bismuth in situ electroplating can affect the repeatability of measurements. With the aim to overcome these drawbacks, the effects of the storage environmental conditions were investigated to improve the morphological stability and electroanalytical performances of Nafion film‐based sensor for the detection of Cd2+ and Pb2+. Nafion‐coated graphite‐based screen‐printed electrodes were stored at different humidity and temperature conditions and characterised by using square wave anodic stripping voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Significant differences were observed at the varying of humidity conditions, with an enhancement of sensor electrochemical performances at lower humidity. Furthermore, different approaches for bismuth in situ electrodeposition on Nafion‐coated screen‐printed electrodes were compared by using overlap or removal approach. This study disclosed considerable differences in the electrochemical performances and morphology of the resulting bismuth‐sensor, obtaining an enhancement of the working stability for the removal approach.  相似文献   

19.
The formation of an inclusion complex between 4‐aminobiphenyl (4‐AB) and β‐cyclodextrin molecules (β‐CD), allows the use of thiolated β‐CDs as chemi‐adsorbed material on a Au electrode as a self‐assembled submonolayer for the selective square wave voltammetric determination of 4‐AB. The submonolayer was characterized by reductive desorption and an association constant of 1.2×104 L/mol was obtained. The optimization of variables yielded a linear dependence of ip/4‐AB concentration in the range of 10?5 to 10?4 mol/L. The selectivity of the method was evaluated in the presence of other aromatic amines obtaining better results with the modified electrode. This methodology was applied to the voltammetric determination of 4‐AB in wastewater samples.  相似文献   

20.
In spite of recent advances in the synthesis of hollow micro/nanostructures, the fabrication of three‐dimensional electrodes on the basis of these structures remains a major challenge. Herein, we develop an electrochemical sacrificial‐template strategy to fabricate hollow Co3O4 microtube arrays with hierarchical porosity. The resultant unique structures and integrated electrode configurations impart enhanced mass transfer and electron mobility, ensuring high activity and stability in catalyzing oxygen and hydrogen evolution reactions. Impressively, the apparent performance can rival that of state‐of‐the‐art noble‐metal and transition‐metal electrocatalysts. Furthermore, this bifunctional electrode can be used for highly efficient overall water splitting, even competing with the integrated performance of Pt/C and IrO2/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号