首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semi‐implicit finite volume model based upon staggered grid is presented for solving shallow water equation. The model employs a time‐splitting scheme that uses a predictor–corrector method for the advection term. The fluxes are calculated based on a Riemann solver in the prediction step and a downwind scheme in the correction step. A simple TVD scheme is employed for shock capturing purposes in which the Minmond limiter is used for flux functions. As a consequence of using staggered grid, an ADI method is adopted for solving the discretized equations for 2‐D problems. Several 1‐D and 2‐D flows have been modeled with satisfactory results when compared with analytical and experimental test cases. The model is also capable of simulating supercritical as well as subcritical flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Flooding due to the failure of a dam or dyke has potentially disastrous consequences. This paper presents a Godunov‐type finite volume solver of the shallow water equations based on dynamically adaptive quadtree grids. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) scheme is used to evaluate interface fluxes in both wet‐ and dry‐bed applications. The numerical model is validated against results from alternative numerical models for idealized circular and rectangular dam breaks. Close agreement is achieved with experimental measurements from the CADAM dam break test and data from a laboratory dyke break undertaken at Delft University of Technology. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

4.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper the explicit jump immersed interface method (EJIIM) is applied to stationary Stokes flows. The boundary value problem in a general, non‐grid aligned domain is reduced by the EJIIM to a sequence of problems in a rectangular domain, where staggered grid‐based finite differences for velocity and pressure variables are used. Each of these subproblems is solved by the fast Stokes solver, consisting of the pressure equation (known also as conjugate gradient Uzawa) method and a fast Fourier transform‐based Poisson solver. This results in an effective algorithm with second‐order convergence for the velocity and first order for the pressure. In contrast to the earlier versions of the EJIIM, the Dirichlét boundary value problem is solved very efficiently also in the case when the computational domain is not simply connected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Massively parallel finite element methods for large-scale computation of storm surges and tidal flows are discussed here. The finite element computations, carried out using unstructured grids, are based on a three-step explicit formulation and on an implicit space–time formulation. Parallel implementations of these unstructured grid-based formulations are carried out on the Fujitsu Highly Parallel Computer AP1000 and on the Thinking Machines CM-5. Simulations of the storm surge accompanying the Ise-Bay typhoon in 1959 and of the tidal flow in Tokyo Bay serve as numerical examples. The impact of parallelization on this type of simulation is also investigated. The present methods are shown to be useful and powerful tools for the analysis of storm surges and tidal flows. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
A class of high‐resolution non‐oscillatory shock‐capturing Roe, TVD and ENO explicit schemes in finite volume approach are presented for the computation of 2D unsteady rapidly varied open channel flows. In order to apply these schemes to simulate the hydraulic phenomena in field, the Strang‐type operator splitting technique is adopted to treat the flow with bottom slope and friction terms. Verifications of the proposed schemes are made by comparison with analytical solutions or experimental data, and very good agreements are obtained. To illustrate the efficiency and stability of the present algorithms, four typical problems of rapidly varied flows are solved and the results of different schemes are compared. It is demonstrated that the proposed method is accurate, robust and highly stable even in the flows with very strong discontinuites, which need no tuning of any adjustable parameter, such as artificial viscosity coefficient, as other methods do, and is a reliable mathematical modeling for 2D practical hydraulic engineering applications. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The finite‐volume methods normally utilize either simple or complicated mathematical expressions to interpolate the fluxes at the cell faces of their unstructured volumes. Alternatively, we benefit from the advantages of both finite‐volume and finite‐element methods and estimate the advection terms on the cell faces using an inclusive pressure‐weighted upwinding scheme extended on unstructured grids. The present pressure‐based method treats the steady and unsteady flows on a collocated grid arrangement. However, to avoid a non‐physical spurious pressure field pattern, two mass flux per volume expressions are derived at the cell interfaces. The dual advantages of using an unstructured‐based discretization and a pressure‐weighted upwinding scheme result in obtaining high accurate solutions with noticeable progress in the performance of the primitive method extended on the structured grids. The accuracy and performance of the extended formulations are demonstrated by solving different standard and benchmark problems. The results show that there are excellent agreements with both benchmark and analytical solutions as well as experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We assess the spatial accuracy and performance of a mixed‐order, explicit multi‐stage method in which an inexpensive low‐order scheme is used for the initial stages, and a more expensive high‐order scheme is used for the final stage only. Compared with the use of a high‐order scheme for all stages, we observe that the mixed‐order scheme achieves comparable accuracy and convergence while providing a speed‐up of a factor of two on mesh sizes of O(106 ? 107) tetrahedron. For calculations with significant adaptive mesh refinement, a more modest speed‐up of 30% is obtained. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

13.
This paper aims at the development of a new stabilization formulation based on the finite calculus (FIC) scheme for solving the Euler equations using the Galerkin FEM on unstructured triangular grids. The FIC method is based on expressing the balance of fluxes in a space–time domain of finite size. It is used to prevent the creation of instabilities typically present in numerical solutions due to the high convective terms and sharp gradients. Two stabilization terms, respectively called streamline term and transverse term, are added via the FIC formulation to the original conservative equations in the space–time domain. An explicit fourth‐order Runge–Kutta scheme is implemented to advance the solution in time. The presented numerical test examples for inviscid flows prove the ability of the proposed stabilization technique for providing appropriate solutions especially near shock waves. Although the derived methodology delivers precise results with a nearly coarse mesh, a mesh refinement technique is coupled to the solution process for obtaining a suitable mesh particularly in the high‐gradient zones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a first‐order HLLC (Harten‐Lax‐Van Leer with contact discontinuities) scheme to solve the Saint‐Venant shallow‐water equations, including morphological evolution of the bed by erosion and deposition of sediments. The Exner equation is used to model the morphological evolution of the bed, while a closure equation is needed to evaluate the rate of sediment transport. The system of Saint‐Venant–Exner equations is solved in a fully coupled way using a finite‐volume technique and a HLLC solver for the fluxes, with a novel wave‐speed estimator adapted to the Exner equation. Wave speeds are usually derived by computing the eigenvalues of the full system, which is highly time‐consuming when no analytical expression is available. In this paper, an eigenvalue analysis of the full system is conducted, leading to simple but still accurate wave‐speed estimators. The new numerical scheme is then tested in three different situations: (1) a circular dam‐break flow over movable bed, (2) an one‐dimensional bed aggradation problem simulated on a 2D unstructured mesh and (3) the case of a dam‐break flow in an erodible channel with a sudden enlargement, for which experimental measurements are available. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio‐vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco–Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate modeling of interfacial flows requires a realistic representation of interface topology. To reduce the computational effort from the complexity of the interface topological changes, the level set method is widely used for solving two‐phase flow problems. This paper presents an explicit characteristic‐based finite volume element method for solving the two‐dimensional level set equation. The method is applicable for the case of non‐divergence‐free velocity field. Accuracy and performance of the proposed method are evaluated via test cases with prescribed velocity fields on structured grids. By given a velocity field, the motion of interface in the normal direction and the mean curvature, examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We develop an efficient, parallel, gas-kinetic solver for computing both continuum and non-continuum flows over non-Cartesian geometries by utilising the unified gas kinetic scheme (UGKS). UGKS, however, requires the computationally expensive update of a six-dimensional phase space at each time step restricting its application to canonical, laminar problems and simple geometries. In this paper, we demonstrate that the applications of UGKS can be increased by parallelising it and combining it with a recently developed, Cartesian grid method (UGKS-CGM). We demonstrate that our Cartesian grid methodology as well as UGKS parallelization perform and scale well on a range of numerical test cases even for a very large number of cores. Finally, we demonstrate that the solver accurately computes canonical turbulence at low Knudsen numbers. These results demonstrate that the parallelised UGKS code can be utilised to effectively study the non-equilibrium effects of rarefaction on laminar and turbulent non-continuum flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号