首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a variational technique, the effect of electron-longitudinal optical (LO) phonon interaction on the ground and the first few excited states of a hydrogenic impurity in a semiconductor quantum wire of rectangular cross section under an external electric field is studied theoretically for the impurity atom doped at various positions. The results for the binding energy as well as polaronic correction are obtained as a function of the size of the wire, the applied uniform electric field and the position of the impurity. It is found that the presence of optical phonons changes significantly the values of the impurity binding energies of the system. Taking into account the electron–LO phonon interaction the 1s→2py and 1s→2pz transition energies are calculated as a function of applied electric field for different impurity positions.  相似文献   

2.
The hydrogenic impurity binding energy in rectangular quantum well wire including both barriers of finite height and an applied electric field are studied. The polaron effects on the ground-state binding energy in electric field are investigated by means of Landau-Pekar variation technique. The results for the binding energy as well as polaronic correction are obtained as a function of the size of the wire, the applied electric field and the position of the impurity. Our calculations are compared with previous results in quantum wires of comparable dimensions.  相似文献   

3.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

4.
Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.  相似文献   

5.
In this work, we directly calculate the ground state energies for an electron in quantum well wires (QWWs) with different shapes in the presence of applied electric and magnetic fields using the finite difference method. Then, we study the ground state binding energy of a hydrogenic impurity with a variational approach. We obtain the binding energy for QWWs consisting of the combinations of square and parabolic well potential. Our results indicate that the impurity binding energy depends strongly on the structural confinement and also, on the applied electric and magnetic field.  相似文献   

6.
The effect of uniform electric and magnetic fields on binding energy and photoionization cross-section of an off-axis hydrogen-like donor impurity in a QWW, approximated by a cylindrical well of finite depth, is investigated within the framework of variational approach. The dependencies of the binding energy and photoionization cross-section on electric field strength, magnetic field induction, wire radius and impurity position are obtained. The cases when the polarization vector of incident radiation is parallel and perpendicular to the wire axis are both discussed.  相似文献   

7.
A variational approach is employed to obtain the ground and the first excited state binding energies of an electron bound to a hydrogenic impurity in a polar semiconductor quantum dot (QD) with symmetric parabolic confinement in both two and three-dimensions. We perform calculations for the entire range of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement length. It is found that the binding energy of ground and first excited state is larger in a two-dimension (2D) dot than in a three-dimension (3D) dot and this trend is more pronounced with the increase of the electron-phonon coupling constant for the same value of the Coulomb binding parameter and confinement length. Furthermore, the ground and the first excited state binding energy increases with increasing the Coulomb binding parameter in both 2D and 3D QDs for the same electron-phonon coupling constant.  相似文献   

8.
The effect of hydrostatic pressure and temperature on the ground state binding energy of hydrogenic impurities is investigated in a GaAs/Ga0.7Al0.3As cylindrical quantum well wire as a function of the wire radius. The calculations are performed using a variational procedure within the effective mass approximation for a finite confinement potential for various values of the hydrostatic pressure and temperatures. The results are compared with the available data in literature and found to be in a good agreement with them.  相似文献   

9.
10.
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires.  相似文献   

11.
A variational formalism for the calculation of the binding energies of hydrogenic donors in a parabolic diluted magnetic semiconductor quantum dot is discussed. Results are obtained for Cd Mn Te/Cd Mn Te structures as a function of the dot radius in the presence of external magnetic and electric fields applied along the growth axis. The donor binding energies are computed for different field strengths and for different dot radii. While the variation of impurity binding energy with dot radii and electric field are as expected, the polarizability values enhance in a magnetic field. However, for certain values of dot radii and in intense magnetic fields the polarizability variation is anomalous. This variation of polarizability is different from non- magnetic quantum well structures. Spin polaronic shifts are estimated using a mean field theory. The results show that the spin polaronic shift increases with magnetic field and decreases as the electric field and dot radius increase.  相似文献   

12.
In this work we study the binding energy of the ground state for a hydrogenic donor impurity in laterally coupled GaAs/Ga1−xAlxAs quantum well wires, considering the simultaneous effects of hydrostatic pressure and applied electric field. We have used a variational method and the effective mass and parabolic band approximations. The low dimensional structure consists of two quantum well wires with rectangular transverse section coupled by a central Ga1−xAlxAs barrier. Our results are reported for several sizes of the structure and we have taken into account variations of the impurity position along the growth direction of the heterostructure.  相似文献   

13.
The effects of transverse electric field on the energy levels of electron and heavy hole, exciton binding energy and excitonic absorption spectra of GaAs parabolic quantum wire are theoretically investigated in detail. The results indicate that the electron and hole energy levels, exciton binding energy, excitonic absorption coefficient and absorption energy becomes smaller with the increase of electric field. That is more significant at the condition of weaker parabolic confinement potential. The phenomena can be explained by the separation of overlap integral of the electron and hole at the ground states.  相似文献   

14.
The ground state binding energies of axial hydrogenic impurities in a coaxial cylindrical quantum well wire are reported as a function of the barrier height and the radius of wire in the presence of a uniform magnetic field applied parallel to the wire axis. The quantum well wire (QWW) is assumed to be an infinitely long cylinder of GaAs material surrounded by AlxGa1−xAs (for finite case and vacuum for infinite case). Binding energy calculations were performed with the use of a variational procedure in the effective mass approximation. We observed that the binding energy is sensitive to well radius only for both larger RR values and small magnetic fields. We also compared the infinite and finite case binding energies and showed that increasing the Al concentration in the finite barrier case, binding energies are increased as expected. Our results are in good agreement and complementary with the previous theoretical works.  相似文献   

15.
We have described the calculation of hydrogenic impurity binding energies in cylindrical GaAs–Ga1−xAlxAs quantum well wires (QWWs) with lateral parabolic confinement in the presence of an axial magnetic field. The numerical calculations of this system have been performed with the use of a variational procedure in the effective mass approximation. We observed sharp changes in binding energy for critical spatial confinement radius and BB magnetic field values.  相似文献   

16.
We study (2+1)(2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field BcBc such that the spectrum is different in the two regions B>BcB>Bc and B<BcB<Bc. The situation is also analyzed for the case B=BcB=Bc.  相似文献   

17.
A Landau–Pekar variational theory is employed to obtain the ground and the first excited state binding energies of an electron bound to a Coulomb impurity in a polar semiconductor quantum dot (QD) with parabolic confinement in both two and three dimensions. It is found that the binding energy increase with increasing the Coulomb binding parameter and increase with the decrease in size of the QD and is much more pronounced with decreasing dimensionality.  相似文献   

18.
In the effective mass approximation, energy eigenvalues of an electron confined in ellipsoidal and semi-ellipsoidal quantum dots, with and without hydrogenic impurity, under the influence of an external electric field have been investigated, using the matrix diagonalization method. The lower-laying states of the electron as functions of the electric field strength, the dot size and its geometry are calculated. Our results show that the electronic states are strongly affected by the applied electric field, the size and the geometry of the dot.  相似文献   

19.
The effects of external electric and magnetic fields on the ground state binding energy of hydrogenic donor impurity are compared in square, V-shaped, and parabolic quantum wells. With the effective-mass envelope-function approximation theory, the ground state binding energies of hydrogenic donor impurity in InGaAsP/InP QWs are calculated through the plane wave basis method. The results indicate that as the quantum well width increases, the binding energy changes most fast in SQW. When the well width is fixed, the binding energy is the largest in VQW for the donor impurity located near the center of QWs. For the smaller and larger well width, the electric field effect on binding energy is the most significant in VQW and SQW, respectively. The magnetic field effect on binding energy is the most significant in VQW. The combined effects of electric and magnetic fields on the binding energy of hydrogenic donor impurity are qualitative consistent in different shaped QWs.  相似文献   

20.
Longitudinal optical phonon effect on Wannier excitons in polar rectangular quantum wires is studied by a variational approach. The binding energy is calculated and the numerical results for several II-VI and III-V compound semiconductor rectangular quantum wires are given. The results show that the phonon effect reduces the binding energy and cannot be neglected. The phonon contribution to the binding energy is sensitive to the size of the rectangular quantum wire section, and increases with decreasing section area. The results for the GaAs rectangular quantum wires coincide with the experimental results. The calculated binding energy and the phonon effect in II-VI QWWs are both stronger than those in III-V compound systems, and the results for ZnSe QWW are qualitatively in agreement with the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号