首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-doped ZnO (ZnO:In) transparent conductive thin films were deposited on glass substrates by RF magnetron sputtering. The effect of substrate temperature on the structural, electrical and optical properties of the ZnO:In thin films was investigated. It was found that higher temperature improves the crystallinity of the films and promotes In substitution easily. ZnO:In thin films with the best crystal quality were fabricated at 300 °C, which exhibit a larger grain size of 29 nm and small tensile strain of 0.9%. The transmittance of all the films was revealed to be over 85% in the visible range independence of the substrate temperatures and the lowest resistivity of ZnO:In thin films is 2.4×10−3 Ω cm.  相似文献   

2.
In this study we investigated properties of ZnO thin films deposited on both oxygen-containing substrates and a substrate without oxygen content at various O2/Ar reactant gas ratios. Deposition of ZnO on indium-tin oxide (ITO) resulted in the best crystallinity, whereas the least degree of crystallization was observed from ZnO deposited on glass. All the films were found to have compressive stress, which was relieved by annealing in O2 environment. ZnO films deposited on glass revealed p-type conductivity when prepared at O2/Ar ratio of 0.25 whereas those on SiNx yielded p-type conductivity when prepared at O2/Ar ratio of 4. In addition, shallower oxygen interstitial seemed to be found from films with better crystallinity. The largest shift in binding energy of Zn2p3/2 was observed from ZnO prepared on glass at O2/Ar ratio of 0.25, whereas that of O1s was obtained from ZnO deposited on SiNx at O2/Ar ratio of 4. A model was proposed in terms of O2 diffusion and hydrogen desorption in order to account for the observed property variations depending on substrates and O2/Ar ratios.  相似文献   

3.
Al-doped ZnO (AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering with a ceramic ZnO:Al2O3 (98 wt%:2 wt%) target. The origin of the high resistivity of the films at the substrate position facing the erosion area of the target was investigated. The results indicate a preferential resputtering of Zn atoms caused by the negative ions, which leads to an increase of the oxygen/metal ratio in the films. Then more Al oxides form and result in the decrease of AlZn (the main donor in the films) concentration in the films. Thus the free carrier concentration decreases badly. This is the main mechanism responsible for the high resistivity.  相似文献   

4.
射频磁控溅射制备氧化钒薄膜的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
马卫红  蔡长龙 《应用光学》2012,33(1):159-163
氧化钒(VOx)薄膜是一种广泛应用于红外热成像探测的薄膜材料,研究VOx薄膜的制备工艺、获取高电阻温度系数(TCR)的VOx薄膜具有重要意义。以高纯金属钒作靶材,采用射频磁控溅射的方法在室温下制备了VOx薄膜。主要研究了氩氧流量比以及功率等工艺参数对薄膜TCR的影响,获得了较好的工艺参数。采用万用表和X射线光电子能谱仪(XPS)分别测试了不同条件下射频磁控溅射法制备的VOx薄膜的电阻特性和薄膜成分,测试结果表明,采用所获得的较好工艺参数制备的VOx薄膜TCR值大于1.8%。  相似文献   

5.
《Current Applied Physics》2020,20(4):557-561
The radio frequency magnetron sputtering technology (RFMS) was employed to deposit perovskite structure orthogonal phase CaZrO3 thin films on Pt/Ti/SiO2/Si substrates. The effects of substrate temperatures on structure and electrical properties of these films were investigated in detail. The CaZrO3 thin films were systematically characterized by means of X-ray diffraction (XRD), Scanning electron microscope (SEM), Multi-frequency LCR meter (HP4294A) and Radiant Precision Workstation to study the phase structure, cross-section morphology, dielectric and ferroelectric properties at different substrate temperatures. The result indicates that these films can withstand 80 V DC Bias voltage and have excellent stability of frequency, voltage and temperature. The CaZrO3 thin film prepared at 550 °C turned out to be mainly orthorhombic CaZrO3 phase with high permittivity, low dielectric loss, extremely low leakage current (at 1 MHz, the dielectric constant is 39.42, the dielectric loss is 0.00455, the quality factor is 220 and the leakage current density is 9.11 × 10−7A/cm2 at 80 V applied voltage.). This work demonstrates that higher substrate temperature can boost the formation of orthorhombic CaZrO3 phase and the CaZrO3 thin film prepared by RF magnetron sputtering is a very promising paraelectric material in the application of thin film capacitor.  相似文献   

6.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells.  相似文献   

7.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration.  相似文献   

8.
以射频磁控溅镀法在柔性聚碳酸酯基板上成长Al掺杂ZnO薄膜,利用XRD、AES、霍尔效应测试仪及单色分光计测量分析Al靶功率对薄膜光电特性的影响. XRD分析表明所有薄膜的衍射峰皆以(002)面为主,Al靶功率为25 W时(002)面衍射峰强度最大,此时薄膜结晶性最佳; AES分析表明随着Al靶功率的增大,Al含量由0 at.%增至18.01 at.%,Zn含量则由72.51 at.%降至38.39 at.%,而O含量没有太大变化,这说明Al可以取代ZnO中Zn的位置;霍尔效应测量表明Al靶功率为25 W时电阻率最小,约为7.75×10~(-4)Ω·cm,而载子浓度及其迁移率则达到最大,分别约为9.35×10~(20) cm~(-3)与8.64 cm~2/(V·s);分光计测量表明薄膜在可见光区的平均透射率可约达90%以上,说明本研究制备的Al掺杂ZnO薄膜是具有高透射率的透明导电薄膜.  相似文献   

9.
Ni, Ag, and Pt-based Al-doped ZnO (AZO) films have been deposited as transparent conductivity layers on quartz by RF magnetron sputtering and characterized by X-ray diffraction, Hall measurement, optical transmission spectroscopy, scanning electron microscopy (SEM). The deposition of thicker metal layer in double layers resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. A film consisting of AZO (250 nm)/Ni (2 nm) double structure, exhibits a sheet resistance of 21.0 Ω/sq, a high transmittance of 76.5%, and characterize good adhesion to substrate. These results make the satisfactory for GaN-based light-emitting diodes (LEDs) and solar cells with metal-based AZO double films as current spread layers.  相似文献   

10.
Highly orientated polycrystalline ZnO films were deposited on sapphire, silicon and quartz substrates at room temperature by r.f. magnetron sputtering. Different photoluminescence (PL) spectra were observed when excited with different wavelength light. A UV emission peak (356 nm) and a blue peak (446 nm) were generated for the films on sapphire, silicon and quartz substrates, and only the 446 nm blue emission appeared for the films on glass substrates when the wavelength of the excitation light was 270 nm. With increasing the wavelength of the excitation light up to 300 and 320 nm, the UV emission disappeared for films on various substrates and the wavelength of the PL peaks increased up to 488 and 516 nm, respectively. When the wavelength of the excitation light increased to 398 nm, the PL spectrum becomes a wide band that is consistent with three emission peaks.  相似文献   

11.
The microstructural characterization of Ga-doped (5 at.%) ZnO thin film was conducted by a transmission electron microscopy study. The atomic arrangement of Ga-doped ZnO having an wurtzite structure was identified by the experimental HRTEM and Fourier filtered images as well as the electron diffractions. As a result, we have revealed that the orientation and defect density of Ga-doped ZnO thin films were greatly influenced by the deposition temperature, resulting in the variation of electrical property. In other words, the tendency forming a c-axis oriented texture grows up and the defects such as dislocations and stacking faults decrease, as the temperature of sputtering deposition increases. Consequently, the electrical properties of Ga-doped ZnO thin films can be controlled by the deposition temperature directly related with the defect density.  相似文献   

12.
实验采用射频磁控溅射法在玻璃衬底上沉积了ZnS多晶薄膜,研究了沉积气压、退火温度和衬底温度对ZnS薄膜质量的影响.利用X射线衍射(XRD)分析了薄膜的微结构,并计算了内应力值.通过紫外-可见光分光光度计测量了薄膜的透过谱,计算了Urbach能量和禁带宽度.利用扫描电子显微镜(SEM)观察了薄膜的表面形貌.结果表明: 衬底温度为室温时沉积的ZnS薄膜具有较大的压应力,并且内应力值随着工作气压增大而增大,在300 ℃下进行退火处理后内应力松弛,衬底温度为350 ℃时制备的ZnS薄膜内应力小,透过率高,经300 ℃退火处理后结晶质量有所提高. 关键词: ZnS薄膜 射频磁控溅射 内应力  相似文献   

13.
Transparent conducting thin films of ZnO:Al (Al-doped ZnO, AZO) were prepared via pulsed DC magnetron sputtering with good transparency and relatively lower resistivity. The AZO films with 800 nm in thickness were deposited on soda-lime glass substrates keeping at 473 K under 0.4 Pa working pressure, 150 W power, 100 μs duty time, 5 μs pulse reverse time, 10 kHz pulse frequency and 95% duty cycle. The as-deposited AZO thin films has resistivity of 6.39 × 10−4 Ω cm measured at room temperature with average visible optical transmittance, Ttotal of 81.9% under which the carrier concentration and mobility were 1.95 × 1021 cm−3 and 5.02 cm2 V−1 s−1, respectively. The films were further etched in different aqueous solutions, 0.5% HCl, 5% oxalic acid, 33% KOH, to conform light scattering properties. The resultant films etched in 0.5% HCl solution for 30 s exhibited high Ttotal = 78.4% with haze value, HT = 0.1 and good electrical properties, ρ = 8.5 × 10−4 Ω cm while those etched in 5% oxalic acid for 150 s had desirable HT = 0.2 and relatively low electrical resistivity, ρ = 7.9 × 10−4 Ω cm. However, the visible transmittance, Ttotal was declined to 72.1%.  相似文献   

14.
The optical properties of undoped zinc oxide (ZnO) thin films of various thicknesses were compared with those of Ga-doped (GZO) thin films. Transparent, high-quality undoped ZnO and GZO films were deposited successfully using radio-frequency (RF) sputtering at room temperature. The films were polycrystalline with a hexagonal structure and a strongly preferred orientation along the c-axis. The films had an average optical transmission >85% in the visible part of the electromagnetic spectrum. The undoped ZnO thin films were more transparent than the GZO thin films. In the photoluminescence (PL) spectrum, ZnO film has higher quality than GZO as a result of decrease in the green emission intensity.  相似文献   

15.
TiO2 thin film was deposited on non-heated Si(1 0 0) substrate by RF magnetron sputtering. The as-deposited films were annealed by a conventional thermal annealing (CTA) and rapid thermal annealing (RTA) at 700 and 800 °C, and the effects of annealing temperature and method on optical properties of studied films were investigated by measuring the optical band gaps and FT-IR spectra. And we also compared the XRD patterns of the studied samples. The as-deposited film showed a mixed structure of anatase and brookite. Only rutile structures were found in samples annealed above 800 °C by CTA, while there are no special peaks except the weak brookite B(2 3 2) peak for the sample annealed at (or above) 800 °C by RTA. FT-IR spectra show the broad peaks due to Ti-O vibration mode in the range of 590-620 cm−1 for the as-deposited film as well as samples annealed by both annealing methods at 700 °C. The studied samples all had the peaks from Si-O vibration mode, which seemed to be due to the reaction between TiO2 and Si substrate, and the intensities of these peaks increased with increasing of annealing temperature. The optical band gap of the as-deposited film was 3.29 eV but it varied from 3.39 to 3.43 eV as the annealing temperature increased from 700 to 800 °C in the samples annealed by CTA. However, it varied from 3.38 to 3.32 eV as the annealing temperature increased from 700 to 800 °C by RTA.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer using RF magnetron sputtering and a sol-gel method. The post-deposition annealing was performed on ZnO thin films prepared using both methods. The formation of ZnO piezoelectric thin films with less residual stress was due to a close lattice mismatch of the ZnO and SiC layers as obtained by the sputtering method. Nanocrystalline, porous ZnO film prepared using the sol-gel method showed strong ultraviolet UV emission at a wavelength of 380 nm. The 3C-SiC buffer layer improved the optical and piezoelectric properties of the ZnO film produced by the two deposition methods. Moreover, the different structures of the ZnO films on the 3C-SiC intermediate layer caused by the different deposition techniques were also considered and discussed.  相似文献   

17.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering at different substrate temperatures in Ar and H2 + Ar sputtering ambient. The effects of substrate temperature on the effectiveness of hydrogen incorporation in Al-doped ZnO films were investigated. The microstructural, electrical and optical properties of AZO films were systematically analyzed by surface profiler, X-ray diffractometry, scanning electron microscope, four-point probe measurement and UV/vis spectrophotometer. The XRD patterns and SEM pictures indicate that the crystallinity of AZO thin films was markedly improved with hydrogen incorporation at low substrate temperature, while the improvement of crystallinity was not an obvious change at high substrate temperature. The results also indicate that hydrogen incorporation has the stronger effectiveness on the transparent conductive properties of AZO films with the substrate temperature decreasing. The resistivity of the films decreases, especially for lower substrate temperatures, due to the incorporation of hydrogen atoms. These results suggest that substrate temperature should be controlled to the lower level to effectively reduce resistivity without detriment to transmittance of AZO thin films when hydrogen is incorporated.  相似文献   

18.
采用直流脉冲反应磁控溅射方法生长W掺杂ZnO(WZO)透明导电氧化物薄膜并研究了衬底温度对薄膜微观结构、组分、表面形貌以及光电性能的影响.实验结果表明,WZO薄膜具有良好的(002)晶面择优取向,且适当的衬底温度是制备优质WZO薄膜的关键因素.随着衬底温度升高,薄膜表面粗糙度先增大后减小;衬底温度较高时,薄膜的结构致密,结晶质量好,电子迁移率高.当衬底温度为325℃时,WZO薄膜获得最低电阻率9.25×10-3Ω·cm,方块电阻为56.24Ω/□,迁移率为11.8 cm2 V-1·s-1,其在可见光及近红外区域(400—1500 nm)范围的平均透过率达到85.7%.  相似文献   

19.
采用射频反应磁控溅射方法,在Si(001)基片上制备了具有高c轴择优取向的ZnO薄膜.利用原子力显微镜、X射线衍射、透射电子显微镜和透射光谱分析技术,对不同工作气压下合成的ZnO薄膜的表面形貌、微观结构和光学性能进行表征,研究了工作气压对ZnO薄膜的结晶性能以及生长行为的影响.研究结果显示:对于Ar/O2流量比例接近1∶1的固定比值下,ZnO薄膜的生长行为主要取决于成膜空间中氧的密度,临界工作气压介于0.5—1.0 Pa之间.当工作气压小于临界值时,ZnO薄膜的成核密度较高,且随工作气压的变化明显,ZnO的生长行为受控于氧的密度,属于氧支配的薄膜生长;当工作气压大于临界值以后,ZnO薄膜的成核密度基本保持不变,Zn原子的数量决定薄膜的生长速率;在0.1—5.0 Pa的工作气压范围内,均可获得高度c轴取向的ZnO薄膜,但工作气压的变化改变着ZnO晶粒之间的界面特征和取向关系.随着工作气压的增加,ZnO晶粒之间的界面失配缺陷减少,但平面织构特征逐渐消失,三叉晶界的空洞逐渐扩大,薄膜的密度下降,折射率减小. 关键词: ZnO薄膜 磁控溅射 表面形貌 微观结构 光学性能  相似文献   

20.
Cu-based Al-doped ZnO multilayer films were deposited on glass substrates by DC magnetron sputtering at room temperature. Three kinds of multilayer structures (AZO/Cu, AZO/Cu/AZO, and Cu/AZO) were designed for comparison, and the effects of the Cu layer thickness on photoelectrical properties of the multilayer films were investigated. The results revealed that the transparent-conductive property and near-infrared reflectance of the films are closely correlated with the Cu layer thickness, and among the three structures, AZO/Cu bi-layer films exhibited preferable photoelectrical properties. The AZO/Cu bi-layer film with a Cu layer thickness of 7 nm displayed the highest figure of merit of 4.82 × 10−3 Ω−1, with a low sheet resistance of 21.7 Ω/sq and an acceptable visible transmittance of 80%. The near infrared reflectance above 50% can be simultaneously obtained. The good performance of the coatings indicates that they are promising for coated glasses, thin film solar cells and heat-reflectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号