首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aid of the nonequilibrium Green's function and the Lang-Firsov canonical transformation, we investigate the joint effects of a phononic environment and the spin-flip scattering on the Andreev reflection (AR) in a ferromagnet/single-molecular quantum dot/superconductor (FM/MQD/SC) system. In the presence of the strong electron-phonon interaction (EPI), it is found that the EPI strongly suppresses the AR current (called the Franck-Condon blockade). When the coherent spin-flip (similar to a transverse magnetic field) is taken into account within the MQD, the AR current is significantly enhanced, furthermore, the spin-polarized AR current or even the pure spin-polarized AR current can be generated. By tuning the system parameters, the amplitude and direction of the AR current can be changed, this provides an efficient mechanism for controlling the AR process.  相似文献   

2.
《Physics letters. A》2020,384(24):126607
We study spin-dependent electron transport properties of a thermally driven interacting quantum dot. When an external magnetic field is applied to the quantum dot, the effective transmissions of spin-up and spin-down electrons are separated from each other and have a perfect mirror symmetry with respect to the incident energy at a certain gate voltage. A pure spin current can be induced in the system and modulated by a magnetic field. Under certain magnetic field strengths, a larger pure spin current can be obtained at gate voltages with the values in a range, not just at a specific voltage. These results indicate that the system can be worked as a pure spin current generator.  相似文献   

3.
Recently, the possibility of an all electrical scheme of preparation and readout for a single spin state in a single quantum dot attached to spin biased leads has been shown [F. Chi et al. Phys. Rev. B 81, 075310 (2010)]. However, spin scattering mechanisms have been omitted. To remedy this lack we consider the influence of the spin-flip scattering process on the proposed preparation and readout scheme.  相似文献   

4.
We present a new device which consists of a molecular quantum dot (MQD) attached to a normal-metal, two ferromagnetic (FM), and a superconducting leads. The spin-related Andreev reflection (AR) current and the spin-dependent single-particle tunneling current through the normal-metal terminal are obtained, and it is found that the spin current exhibits the transistor-like behavior. The joint effects of the coherent spin flip and the angle between magnetic moments of the two FM leads on the spin current are also studied, these results provide the possibility to manipulate the spin current with the system parameters.  相似文献   

5.
We investigate theoretically the electronic transport through a parallel-coupled double quantum dot (DQD) molecule attached to metallic electrodes, in which the spin-flip scattering on each quantum dot is considered. Special attention is paid to the effects of the intradot spin-flip processes on the linear conductance by using the equation of motion approach for Green’s functions. When a weak spin-flip scattering on each quantum dot is present, the single Fano peak splits into two Fano peaks, and the Breit–Wigner resonance may be suppressed slightly. When the spin-flip scattering strength on each quantum dot becomes strong, the linear conductance spectrum consists of two Breit–Wigner peaks and two Fano peaks due to the quantum interference effects. The positions and shapes of these resonant peaks can be controlled by using the magnetic flux through the quantum device.  相似文献   

6.
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.  相似文献   

7.
赵华  张国锋  殷雯  梁九卿 《中国物理》2004,13(6):938-941
We have studied the dynamical behaviours of two electrons confined in a double quantum dot driven by rotating magnetic fields in terms of the theory of Lewis-Riesenfeld Hermitian invariants for the explicitly time-dependent Hamiltonian. The coherent spin oscillations in the dot provide a generation source for spin current. Exact solutions obtained allow us to investigate the dynamical properties of the spin localization for various initial localized states.  相似文献   

8.
A three-quantum-dot spin filter based on nonequilibrium Green?s function technique is proposed with external magnetic flux, Rashba spin orbit interaction, and intradot coulomb interaction taken into consideration. Numerical results indicate a spin filter can be made efficient by adjusting external magnetic flux and Rashba spin orbit interaction. Moreover, the formation of a resonance band is discussed through calculation. It is observed that the possibility of transition from one peak to other three peaks in the conductance spectrum increases with increasing interdot coupling strength.  相似文献   

9.
The supercurrent in a triangular triple quantum dot system is investigated by using the nonequilibrium Green's function method. It is found that the sign of the supercurrent can be changed from positive to negative with increasing the strength of spin-flip scattering, resulting in the π-junction transition. The supercurrent and the π-junction transition are also modulated by tuning the system parameters such as the gate voltage and the interdot coupling. The tunable π-junction transition is explained in terms of the current carrying density of states. These results provide the ways of manipulating the supercurrent in a triple quantum dot system.  相似文献   

10.
《中国物理 B》2021,30(10):100302-100302
The spin transport properties are theoretically investigated when a quantum dot(QD) is side-coupled to Majorana bound states(MBSs) driven by a symmetric dipolar spin battery. It is found that MBSs have a great effect on spin transport properties. The peak-to-valley ratio of the spin current decreases as the coupling strength between the MBS and the QD increases. Moreover, a non-zero charge current with two resonance peaks appears in the system. In the extreme case where the dot–MBS coupling strength is strong enough, the spin current and the charge current are both constants in the non-resonance peak range. When considering the effect of the Zeeman energy, it is interesting that the resonance peak at the higher energy appears one shoulder. And the shoulder turns into a peak when the Zeeman energy is big enough. In addition, the coupling strength between the two MBSs weakens their effects on the currents of the system. These results are helpful for understanding the MBSs signature in the transport spectra.  相似文献   

11.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

12.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

13.
Phonon effects in tunnelling through a double quantum dot molecule are investigated by use of a recently developed technique, which is based on an exact mapping of a many-body electron-phonon interaction problem onto a multichannel one-body problem. The molecule is sandwiched between two ideal electrodes and the electron at each dot of the molecule interacts independently with Einstein phonons. Single-electron transmission rates through the molecule are computed and the nonlinear spectrum obtained shows a structure with many more satellite peaks due to the excitations of phonons. The strength of resonant peaks is found to be strongly dependent on the number of excited phonons. The effects of electron-phonon interaction on the current and shot noise, depending on the voltage bias applied at the two electrodes as well as the potential energy of the molecule, are discussed.  相似文献   

14.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

15.
The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.  相似文献   

16.
The charge density and pair correlation function of three interacting electrons confined within a two-dimensional disc-like hard-wall quantum dot are calculated by full numerical diagonalization of the Hamiltonian. The formation of a Wigner molecule in the form of equilateral triangular configuration for electrons is observed as the size of the dot is increased.  相似文献   

17.
Yibo Ying 《Physics letters. A》2010,374(36):3758-3761
We study the spin polarized transport through a quantum dot transistor. It is shown that the interplay of large Coulomb interaction and optically induced spin accumulation gives rise to the spin valve effect over a range of bias. We also find negative tunnel magnetoresistance for system with ferromagnetic electrodes.  相似文献   

18.
19.
We propose a method of operating a quantum state machine made of stacked quantum dots buried in adjacent to the channel of a spin field-effect transistor (FET) [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665; K. Yoh, et al., Proceedings of the 23rd International Conference on Physics of Semiconductors (ICPS) 2004; H. Ohno, K. Yoh et al., Jpn. J. Appl. Phys. 42 (2003) L87; K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134]. In this method, a spin blockade measurement extracts the quantum state of a nearest quantum dot through Coulomb blockade [K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134; K. Yoh, H. Kazama, Physica E 7 (2000) 440] of the adjacent channel conductance. Repeated quantum Zeno-like (QZ) measurements [H. Nakazato, et al., Phys. Rev. Lett. 90 (2003) 060401] of the spin blockade is shown to purify the quantum dot states within several repetitions. The growth constraints of the stacked InAs quantum dots are shown to provide an exchange interaction energy in the range of 0.01–1 meV [S. Itoh, et al., Jpn. J. Appl. Phys. 38 (1999) L917; A. Tackeuchi, et al., Jpn. J. Appl. Phys. 42 (2003) 4278]. We have verified that one can reach the fidelity of 90% by repeating the measurement twice, and that of 99.9% by repeating only eleven QZ measurements. Entangled states with two and three vertically stacked dots are achieved with the sampling frequency of the order of 100 MHz.  相似文献   

20.
We have carried out the theoretical calculation of the differential cross section for the electron Raman scattering process associated with a hydrogenic impurity in a disc-shaped quantum dot (QD). We consider the impurity states confined in a disc-shaped QD with parabolic potential in the presence of an external electric field. Effects of the electric field and the confinement strength on the differential cross section are investigated. We make a comparison about the Raman intensity between with and without the Coulomb interaction. We found that the differential cross section of the hydrogenic impurity in a disc-shaped QD dependent strongly on the confinement strength, the external electric field intensity and the Coulomb interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号