首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods. Received: 11 July 2000 / Accepted: 21 June 2001 Published online: 29 November 2001  相似文献   

2.
Pattern tracking in consecutive 3D LIF images based on least squares matching (LSM) of grey levels has been developed recently for velocity and velocity gradient measurements. The shortcomings of this method are clearly shown. The present article presents an improvement on this method by introducing a local multi-patch (LMP) technique through the LSM approach. The method is validated using the flow field of a turbulent channel flow obtained by direct numerical simulation (DNS) and a synthetic image with grey-level patterns. The results show that LMP matching allows the determination of the velocity and the velocity gradient fields with high accuracy including the second derivatives. Measurements of a round non-buoyant jet are presented which demonstrate the good performance of the method when applied under laboratory conditions. This method can also be applied on two-dimensional images provided that the flow is strictly two-dimensional. Received: 7 July 1999/Accepted: 13 November 1999  相似文献   

3.
The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase the spatial resolution of the velocity measurement to a maximum of 1.8 mm×3.1 mm. Velocity validation tests in fully developed laminar pipe flow showed good agreement with both optical PIV measurements and the expected parabolic profile. A dynamic range of 1 to 60 cm/s has been obtained to date.  相似文献   

4.
Digital Pulsed Laser Velocimetry (DPLV) is a full-field, two dimensional, noninvasive, quantitative flow visualization technique. The technique described here includes the novel use of direct digitization of two-phase bubbly flow images using a high resolution imaging system. The image data is stored for further analysis by new image processing and analysis software developed for flow experiments.In the technique, ten consecutive frames of data separated by a time increment of 150 ms, are recorded. Each of these ten frames contains the images of bubbles at that one instant of time. A program smooths the instantaneous image and calculates bubble parameters. Another program matches the bubbles from each of the frames into tracks of bubbles through time. This program uses a statistical technique to determine the best possible path of the bubbles.The ability of pulsed laser velocimetry to capture simultaneous and quantitative rather than qualitative information along with these image processing techniques gives the experimentalist a powerful tool to perform flow visualization and analysis.  相似文献   

5.
Particle image velocimetry with optical flow   总被引:4,自引:0,他引:4  
 An optical Flow technique based on the use of Dynamic Programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10% added noise level and allowing 10% of particles of appear or disappear. A velocity vector is obtained for every pixel of the image. Received: 18 July 1997/Accepted: 5 December 1997  相似文献   

6.
The unsteady flow field above a NACA 0012 airfoil pitching under deep dynamic stall conditions has been investigated in a low-speed wind tunnel by means of particle image velocimetry. The measurements of the instantaneous flow velocity field show the characteristic features of the dynamic stall process: formation and development of an organized vortex structure for increasing incidences and the subsequent separation. Vorticity and divergence estimated from the measured data give a good insight into the complex flow behaviour during the downstroke motion. Furthermore, small-scale structures could be observed in the separated flow field and even within the dynamic stall vortex.The authors would like to thank Dr. Schäfer (ISL) for his support in organizing the cooperative measurements, Mr. Seyb (DLR) for his help during the recording of PIV images, Dr. Bretthauer (DLR) and Mr. Vollmers (DLR) for his assistance during the phase of evaluation and post processing of the PIV recordings and Dr. Geißler (DLR) for helpful discussions on the dynamic stall problem.  相似文献   

7.
A new optical void fraction measurement system has been coupled to a flow boiling test facility to obtain dynamic and time-averaged void fractions in a horizontal tube. A series of evaporation tests have been run for two refrigerants. R-22 was tested under mass velocity conditions of 70, 100, 150 and 200 kg/m2 s and R-410A for 70, 150, 200 and 300 kg/m2 s in a 13.6 mm diameter glass tube. Using our newly developed image processing system, about 227 000 images have been analyzed in this study to provide the same number of dynamic void fraction measurements. From these images, 238 time-averaged void fraction values have been obtained for vapor qualities from 0.01 to 0.95. These experimental points show very good agreement with the horizontal version of the Rouhani–Axelsson drift flux void fraction model.  相似文献   

8.
A concept for dynamic mixture formation investigations of fuel/air mixtures is presented which can equally be applied to several other laser induced fluorescence (LIF) applications. Double-pulse LIF imaging was used to gain insight into dynamic mixture formation processes. The setup consists of a modified standard PIV setup. The "fuel/air ratio measurement by laser induced fluorescence (FARLIF)" approach is used for a quantification of the LIF images in order to obtain pairs of 2D fuel/air ratio maps. Two different evaluation concepts for LIF double pulse images are discussed. The first is based on the calculation of the temporal derivative field of the fuel/air ratio distribution. The result gives insight into the dynamic mixing process, showing where and how the mixture is changing locally. The second concept uses optical flow methods in order to estimate the motion of fluorescence (i.e., mixture) structures to gain insight into the dynamics, showing the distortion and the motion of the inhomogeneous mixture field. For this "fluorescence motion analysis" (FMA) two different evaluation approaches—the "variational gradient based approach" and the "variational cross correlation based approach"—are presented. For the validation of both, synthetic LIF image pairs with predefined motion fields were generated. Both methods were applied and the results compared with the known original motion field. This validation shows that FMA yields reliable results even for image pairs with low signal/noise ratio. Here, the "variational gradient based approach" turned out to be the better choice so far. Finally, the experimental combination of double-pulse FARLIF imaging with FMA and simultaneous PIV measurement is demonstrated. The comparison of the FMA motion field and the flow velocity field captured by PIV shows that both results basically reflect complementary information of the flow field. It is shown that the motion field of the fluorescence structures does not (necessarily) need to represent the actual flow velocity and that the flow velocity field alone can not illustrate the structure motion in any case. Therefore, the simultaneous measurement of both gives the deepest insight into the dynamic mixture formation process. The examined concepts and evaluation approaches of this paper can easily be adapted to various other planar LIF methods (with the LIF signal representing, e.g., species concentration, temperature, density etc.) broadening the insight for a wide range of different dynamic processes.
J. Scholz (Corresponding author)Email: Email:
V. BeushausenEmail:
  相似文献   

9.
A fast quantitative processing of particle image velocimetry photographs by a whole-field spatial filtering technique is described. Photographs are observed through a conventional filtering setup. This produces fringe patterned images with each fringe corresponding to a fixed value of one velocity component. These images are acquired with a CCD camera and digitally processed to retrieve the fringe centerline positions. The interpolation of these data provides the velocity value on a grid of regularly spaced points.Photographs taken from a Rayleigh-Bénard convective flow have been processed with this technique and with a previously reported point-by-point technique. Results from both techniques compare well.This work was supported by Diputación General de Aragón under Grant No. PCB6-90  相似文献   

10.
A three-dimensional Particle Tracking Velocimetry (3-D PTV) technique has been developed to provide time-resolved, three-dimensional velocity field measurements throughout a finite volume. This technique offers many advantages for fundamental research in turbulence and applied research in areas such as mixing and combustion. The data acquired in 3-D PTV is a time sequence of stereo images of flow tracer particles suspended in the fluid. In this paper, the implementation of the technique is discussed in detail, as well as the results of an extensive statistical investigation of the performance of the algorithms. The technique has been optimized to allow fully automatic processing of long sequences of image pairs in a computationally efficient manner, hereby providing a viable, practical tool for the study of complex flows.List of symbols x, y, z Particle position - u, v, w Particle velocity This work was supported by a grant from Ford Motor Company, Powertrain Research Department. Their support is gratefully acknowledged.  相似文献   

11.
 New techniques are developed to improve the velocity flow-field measurement capability within a free-surface boundary layer region on which progressive capillary-gravity waves are present. Due to the extremely thin but rather vortical characteristics of the aforementioned boundary layer, conventional particle image velocimetry (PIV) methods fail to estimate velocity (and vorticity) vectors at an acceptable detection rate. This failure is a direct consequence of optimal PIV parameters that are difficult to achieve in practice for such flow situations. A new technique, Sub-pattern PIV, is developed. This method has features similar to both the super-resolution PIV (Keane et al. 1995) and the particle image distortion (PID) technique (Huang et al. 1993), but is predicated upon a very differential philosophy. Another difficulty that arises in experiments to investigate surface boundary layer flows is that the oscillating and deforming air–water interface has a mirror-like behavior that affects the images, and generates very noisy data. An alternative experimental setup that utilizes the Brewster angle phenomenon is adopted and the specular effects of the free-surface are removed successfully. This Brewster angle imaging, along with the Sub-pattern PIV technique, is used for the target application – a free-surface boundary layer investigation. It proved to be very effective. The methodology of both techniques is discussed, and the modified PIV procedure is validated by numerical probabilistic simulations. Application to the capillary-gravity wave boundary layer is presented in a subsequent paper. Received: 31 July 1997/Accepted: 4 February 1998  相似文献   

12.
Using the multivision technique, a new void fraction measurement method was developed for bubble and slug flow in a small channel. The multivision system was developed to obtain images of the two-phase flow in two perpendicular directions. The obtained images were processed—using image segmentation, image subtraction, Canny edge detection, binarization, and hole filling—to extract the phase boundaries and information about the bubble or slug parameters. With the extracted information, a new void fraction measurement model was developed and used to determine the void fraction of the two-phase flow. The proposed method was validated experimentally in horizontal and vertical channels with different inner diameters of 2.1, 2.9, and 4.0 mm. The proposed method of measuring the void fraction has better performance than the methods that use images acquired in only one direction, with a maximum absolute difference between the measured and reference values of less than 6%.  相似文献   

13.
To be able to characterize the airflow in the presence of liquid droplets in a confined geometry, a new two-phase particle image velocimetry (PIV) method is developed. It is based on a two-colour YAG laser and two different fluorescent dyes dissolved in the gas-phase tracers and droplets. This approach permits to separate the images (and thus the information) of the two phases optically and simultaneously. When experiments need to be carried out in a confined geometry (such as in a wind tunnel) with uniform droplet distribution and high turbulence, which are the case in the present investigation, one should be able to deal with continuous droplet deposition on the lateral walls through which the cameras acquire images. It requires the adaptation of the experimental conditions and the development of a dynamic background subtraction algorithm. The typical results reveal the influence of the presence of liquid droplets on the airflow by comparing single-phase flow field to the air-phase motion in two-phase flow configuration. Furthermore, by analysing the continuous-phase and the discrete-phase properties, some aspects of the interaction between the two phases are shown.  相似文献   

14.
本文利用三台照相机系统记录三维射流的流动,通过照相机系统的标定、三维空间粒子的重构、空间粒子的对应及误对应向量的判断和消除等,建立了一种三个图像记录设备组成的三维PIV图像处理算法,并对其精度进行了分析,通过对三维射流图像的处理和分析表明,该方法是切实可行的。  相似文献   

15.
A hybrid multiplexing holographic velocimetry used for characterizing three-dimensional, three-component (3D–3C) flow behaviors in microscale devices was designed and tested in this paper. Derived from the concept of holographic particle image velocimetry (HPIV), a new experimental facility was realized by integrating a holographic technique with a state-of-the-art multiplexing operation based on a microPIV configuration. A photopolymer plate was adopted as an intermedium to record serial stereoscopic images in the same segment. The recorded images were retrieved by a scanning approach, and, afterwards, the distributions of particles in the fluid were analyzed. Finally, a concise cross-correlation algorithm (CCC) was used to analyze particle movement and, hence, the velocity field, which was visualized by using a chromatic technique. To verify practicability, the stereoscopic flow in a backward facing step (BFS) chamber was measured by using the new experimental setup, as well a microPIV system. The comparison indicated that the photopolymer-based velocimetry was practicable to microflow investigation; however, its accuracy needed to be improved.  相似文献   

16.
Simultaneous air/fuel-phase PIV measurements in a dense fuel spray   总被引:2,自引:0,他引:2  
Driscoll  K. D.  Sick  V.  Gray  C. 《Experiments in fluids》2003,35(1):112-115
A new diagnostic has been developed that is capable of obtaining simultaneous two-phase velocity measurements in a gasoline direct-injection fuel spray. This technique utilizes a two-laser (double-pulse) two-camera (double-frame) setup to simultaneously image the injected fuel and entrained air to determine the 2D velocity vector fields of both phases using cross-correlation particle image velocimetry (PIV). The air phase is visualized through fluorescence from seeding particles introduced into the static measurement volume while Mie scattering signals are collected from the fuel droplets. The combination of different laser wavelengths and a spectral signal shift for the air phase allows spectral separation of the signals. Independent timing of the laser pulses permits optimized adaptation of the velocity dynamic range for the two phases to account for the large difference in velocities between air and fuel droplets.  相似文献   

17.
 In the last five years or so, true-colour image processing has gone being available mainly to highly technical users on expensive image processing systems to being used by virtually anyone who can use a desktop computer. Also, during the past 25 years, liquid crystals have emerged as reliable temperature sensors for heat transfer research, and have been applied in a number of situations to visualise the temperature distribution under complex flow fields. In this study the true-colour image processing of the liquid crystal (LC) images was developed successfully and applied to the study of heat and mass transfer problems. The history of this technique is reviewed and principal methods are described and some examples are presented. Received on 20 September 1996  相似文献   

18.
1. Introduction Injections of evaporative liquids into fluidized solid parti- cles are routinely practiced in industrial processes involv- ing gas-solid fluidization systems such as fluid catalytic cracking, polymerization, and plastic coating (Fan et al., 2001). In the FCC riser system, heavy oil is injected into the system to evaporate rapidly by contact with the hot catalyst particles. Simultaneously, thermal and catalytic cracking reactions take place. During a polymerization process, a …  相似文献   

19.
A digital dual-camera cinematographic particle image velocimetry (CPIV) system has been developed to provide time-resolved, high resolution flow measurements in high-Reynolds number, turbulent flows. Two high-speed CMOS cameras were optically combined to acquire double-pulsed CPIV images at kilohertz frame rates. Bias and random errors due to camera misalignment, camera vibration, and lens aberration were corrected or estimated. Systematic errors due to the camera misalignment were reduced to less than 2 pixels throughout the image plane using mechanical alignment, resulting in 3.1% positional uncertainty of velocity measurements. Frame-to-frame uncertainties caused by mechanical vibration were eliminated with the aid of digital image calibration and frame-to-frame camera registration. This dual-camera CPIV system is capable of resolving high speed, unsteady flows with high temporal and spatial resolutions. It also allows time intervals between the two exposures down to 4 μs, enabling the measurements of speed flows 5–10 times higher than possible with frame-straddling using similar cameras. A turbulent shallow cavity was then chosen as the experimental object investigated by this dual-camera CPIV technique.  相似文献   

20.
Hua  Zhongyun  Li  Jiaxin  Chen  Yongyong  Yi  Shuang 《Nonlinear dynamics》2021,104(1):807-825

Since a substitution box (S-box) is the nonlinearity part of a symmetric key encryption scheme, it directly determines the performance and security level of the encryption scheme. Thus, generating S-box with high performance and efficiency is attracting. This paper proposes a novel method to construct S-box using the complete Latin square and chaotic system. First, a complete Latin square is generated using the chaotic sequences produced by a chaotic system. Then an S-box is constructed using the complete Latin square. Performance analyses show that the S-box generated by our proposed method has a high performance and can achieve strong ability to resist many security attacks such as the linear attack, differential attack and so on. To show the efficiency of the constructed S-box, this paper further applies the S-box to image encryption application. Security analyses show that the developed image encryption algorithm is able to encrypt different kinds of images into cipher images with uniformly distributed histograms. Performance evaluations demonstrate that it has a high security level and can outperform several state-of-the-art encryption algorithms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号