首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of a study of the plasma density distribution in the slit aperture of a right-angled extended hollow cathode used in a ribbon-electron-beam plasma source operating at forevacuum pressures (1–10 Pa) are presented. It is shown that a local peak of plasma density appears in some region of the slit aperture as the slit width is decreased. This results in the appearance of a region of increased current density when the ribbon beam forms. The uniformity of the beam current density distribution is additionally disturbed by the reverse ion flow whose effect on the emission properties of the plasma is significant in the region of elevated pressure. A model which describes the development of plasma density nonuniformity in a hollow cathode is proposed which is based on the idea that the electron current flows predominantly through the slit aperture regions that are associated with local openings of the cathode layer ion sheaths. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 3–9, June, 2007.  相似文献   

2.
The plasma parameters and the emissivity of a ribbon electron beam source based on a discharge with an inhomogeneous extended hollow cathode are measured. A constriction in the cathode cavity increases the plasma density near the emitting area boundary, which adds to the electron current density in the beam. The reason for the above effect is the formation of the plasma density distribution nonuniform across the cavity with a maximum in the middle. This maximum is caused primarily by a plasma electron flow from the constriction, which is generated by the electric field and is directed toward a slit emission-extracting aperture.  相似文献   

3.
The plasma density distributions in the slit aperture of the extended rectangular hollow cathode of the source of a ribbon electron beam are investigated experimentally. It is found that a local maximum whose parameters are determined by the discharge current appears in the density distribution when the slot width is less than a certain threshold value. This maximum results in an inhomogeneous current density distribution in the beam. It is shown that the appearance of the local maximum in the plasma density is related to the overlapping of the ion sheaths in the slit aperture of the hollow cathode.  相似文献   

4.
The process of extraction of an electron beam through the glass wall of a sealed-off acceleration chamber has been investigated. It has been shown that the electron beam extracted from the MIB-6E small-sized betatron has a nonuniform cross-sectional distribution of the particle flux density. This nonuniformity is due to the imperfection of the beam extraction devices and to the flaws in design of the extraction window of the accelerator chamber. The electrons extracted through the glass wall of the window lose a major portion of their energy. At the outlet of the chamber of the small-sized betatron, the spectrum of the electrons is not line. The half-width of the spectral line of the electron beam is, at best, 6% for a window glass thickness of 0.5 mm and about 15% for a glass thickness of 4 mm. The results of this study may find practical implementation in developing extracted electron beam formation systems.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 51–55, January, 2005.  相似文献   

5.
An experimental investigation is made of the influence of local nonuniformities of a mirror-configuration magnetic field on oscillations of the space charge and the structure of a long-pulse relativistic electron beam. It is found that the outcome depends on the axial configuration of the nonuniformity. A nonuniformity near the cathode can substantially reduce the amplitude of the oscillations and improve the beam transport. The creation of a nonuniformity far from the cathode leads to an accelerated increase in the oscillations and causes spreading of the transverse structure of the beam. A possible explanation is given for the mechanism responsible for the influence of these local magnetic field nonuniformities assuming reflection of the cathode plasma and electron flux from the magnetic mirror, and also allowing for a jump in the drift velocity. Zh. Tekh. Fiz. 67, 83–88 (August 1997)  相似文献   

6.
We describe experiments demonstrating the formation of a high current electron beam from a vacuum arc plasma. A preexisting vacuum arc ion source was used, with the extraction voltage reversed in polarity so as to form an electron beam rather than an ion beam; no other changes were required. The beam formed was of energy up to 33 keV, beam current up to 70 A, beam diameter about 10 cm, pulse width 500 μs, and energy density up to 25 J/cm2. This kind of source can be used for material surface modification  相似文献   

7.
The effect of the return plasma current with a characteristic radius differing from the relevant radius of the current density in a relativistic electron beam on the dynamics of the resistive hose instability of the beam is analyzed. The equations are derived for the linear stage of instability evolution. It is shown that when the return plasma current is broader in the radial direction (as compared to the beam), the resistive hose instability becomes noticeably weaker.  相似文献   

8.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

9.
The results of a theoretical study of dual-beam charged-particle acceleration in a plasma waveguide in a string longitudinal magnetic field are presented. It is shown that effective charged-particle acceleration can be realized by using electric-field nonuniformity over the waveguide cross section. It is established that optimal acceleration conditions can be achieved when the particles enter the accelerating field that corresponds to the region of the first amplitude maximu. The maximum electron energy of the accelerated beam is determined as a function of the guiding-beam current. It is established that the current of accelerated electrons that have maximal energy is 5–10% of the total beam current.Khar'kov Physics and Engineering Institute, Academy of Sciences of the Ukrainian SSSR. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 34, No. 8, pp. 947–955, August, 1991.  相似文献   

10.
The maximum ion current that can be extracted as a high-energy beam from a metal-vapor vacuum-arc ion source is considered. Results are presented of measurements of the plasma ion current in the metal-vapor vacuum-arc II (MEVVA II) ion source. It is shown that this source is an efficient generator of metal ions, an intense flux of which is efficiently transported to the beam extractor. The maximum metal-ion current that is available for extraction at the extractor location is 5 percent of the arc current. The limitation to the intensity of the metal-ion beam that can be produced by this kind of ion source is found to be in the extractor design.  相似文献   

11.
电子回旋共振离子推力器(electron cyclotron resonance ion thruster,ECRIT)离子源内等离子体分布会影响束流引出,而磁场结构决定的ECR区与天线的相对位置共同影响了等离子体分布.在鞘层作用下,等离子体中的离子或电子被加速对壁面产生溅射,形成壁面离子或电子电流,造成壁面磨损和等离子体损失,因此研究壁面电流与等离子体特征十分重要.为此本文建立2 cm ECRIT的粒子PIC/MCC(particle-in-cell with Monte Carlo collision)仿真模型,数值模拟研究磁场结构对离子源内等离子体与壁面电流特性的影响.计算表明,当ECR区位于天线上游时,等离子体集中在天线上游和内外磁环间,栅极前离子密度最低,故离子源引出束流、磁环端面电流和天线壁面电流较低.ECR区位于天线下游时,天线和栅极上游附近的等离子体密度较高,故离子源引出束流、天线壁面电流和磁环端面电流较高.腔体壁面等离子体分布与电流受磁场影响最小.  相似文献   

12.
We have studied the generation of the beam plasma formed by a forevacuum plasma source of a ribbon electron beam in the conditions of its transportation without an accompanying magnetic field. The ignition conditions in the beam transportation region of the beam–plasma discharge producing a plasma formation of the plasma sheet type with a plasma concentration of ~1016 m–3 and an electron temperature of 1–2.5 eV have been determined. The attained values of parameters and the sizes of the plasma formation make it possible to use it in technologies of the surface modification of planar extended articles.  相似文献   

13.
A kinetic approach is applied to derive the transport equations, the virial equation, the dynamic-equilibrium equation, and the envelope equation for an axially symmetric paraxial relativistic electron beam propagating through a scattering gas-plasma medium in the presence of a reverse plasma current with a radial density profile that is generally different from the beam density profile. The equations obtained include additional terms that account for this difference.  相似文献   

14.
《Current Applied Physics》2015,15(12):1599-1605
In this paper, we have investigated the feasibility of the high current beam extraction from anode spot plasma as an ion source for large area ion implantation. Experiments have been carried out with the ambient plasma produced by inductive coupling with radio-frequency (RF) power of 200 W at the frequency of 13.56 MHz. Anode spot plasmas are generated near the extraction hole of 2 mm in diameter at the center of a bias electrode whose area exposed to the ambient plasma can be changed. It is found that the maximum ion beam current is extracted at the optimum operating pressure at which the area of bias electrode exposed to ambient plasma is fully covered with the anode spot plasma whose size is dominantly determined by the operating pressure for given gas species. It is also observed that the extracted ion beam current increases nonlinearly with the bias power due to the changes in size and shape of the anode spot plasma. With the well-established anode spot plasma operating at the optimum gas pressure, we have successfully extracted high current ion beam of 6.4 mA (204 mA/cm2) at the bias power of 22 W (∼10% of RF power), which is 43 times larger than that extracted from the plasma without anode spot. Based on the experimental results, criteria for electrode design and operating pressure for ion beam extraction from larger extraction aperture are suggested. In addition, the stability of anode spot plasma in the presence of ion beam extraction through an extraction hole is discussed in terms of the particle balance model.  相似文献   

15.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

16.
Results are presented from experimental studies of the formation of focused electron beams produced by extracting electrons from the plasma of a steady-state discharge with a hollow cathode in the forevacuum pressure range. Based on the measurements of the energy spectrum and diameter of the electron beam, as well as of the emission parameters of the plasma produced in the course of beam-gas interaction, a conclusion is drawn about the excitation of a beam-plasma discharge that deteriorates the beam focusing conditions. The threshold beam current density for the excitation of a beam-plasma discharge is found to increase with accelerating voltage and gas pressure.  相似文献   

17.
A study is made of the effect of the magnetic self-field of a relativistic electron beam propagating in the ion focus regime on the transverse dynamics of plasma electrons. For Gaussian radial profiles of the beam and the ion density in the channel, the maximum deviation of the plasma electrons from the axis of the beam-plasma system is determined as a function of the space-charge neutralization fraction, the ratio of the characteristic beam radius to the channel radius, and the net beam current.  相似文献   

18.
Results of experimental investigations into the spatial distribution of the parameters of the plasma (electron concentration and temperature) generated by a sheet beam with energy up to 2 keV in argon at pressures from 6 to 9 Pa are presented. The electron beam was produced by a source with a plasma cathode specially designed for emission of beams in the range of forvacuum pressures. It is demonstrated that the character of distribution of the plasma parameters is caused by the corresponding distribution of the electron current density over the beam cross section, and the plasma parameters themselves also noticeably depend on the gas pressure and the magnetic field. A model of ionization processes that provides satisfactory agreement between the calculated and experimental dependences is suggested.  相似文献   

19.
扩展Pierce理论的应用范围, 通过解析求解泊松方程和拉氏方程, 在固定发射面的情况下, 得到了在给定束流强度密度下带状平行束外空间电位分布的一般方法, 可为引出系统的设计提供一定的参考.  相似文献   

20.
It is shown that the existence of a current in the external circuit of a double insulated probe without electrical bias between its electrodes is evidence of the presence of a stream (beam) of charged particles in a plasma. The species of particles forming a beam in a plasma, the direction and divergence of the beam, and information on the distribution of the current density over the beam cross section in the plasma can be obtained by determining the direction and strength of the current in the external circuit of the probe as it is positioned at various sites in the investigated system. Zh. Tekh. Fiz. 68, 121–123 (October 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号