首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged surfactants, and k(c) is further reduced in anionic/cationic surfactant mixtures where the surfactant in excess has the smaller tail volume. Likewise, the reduction of k(c) is enhanced in mixtures of an ionic and a nonionic surfactant where the ionic surfactant has the smaller tail. The effective bilayer bending constant (k(bi)) is also found to be reduced by mixing, and as a result, k(bi) is seen to go through a minimum at some intermediate composition. The reduction of k(bi) is expected to be most pronounced in mixtures of two oppositely charged surfactants where the surfactant in excess has the smaller tail in agreement with experimental observations.  相似文献   

2.
The self-assembly of surfactants forming toruslike or toroidal micelles has been investigated from a theoretical point of view, in particular the structural behaviour and stability of tori in terms of the three bending elasticity constants spontaneous curvature (H(0)), bending rigidity (k(c)) and saddle-splay constant (k(c)). It is demonstrated that the size of toruslike micelles increases with an increasing bending rigidity, but is independent of both spontaneous curvature and saddle-splay constant. Similar to conventional micelles, toruslike micelles are found to be stable over bilayers as the spontaneous curvature times the surfactant layer thickness exceeds 1/4. Moreover, it is shown that toruslike micelles, in general, are favoured at the expense of long spherocylindrical micelles as a result of elimination of the unfavourable end-caps. However, conventional micelles that are able to grow with respect to both width and length (tablets) may be stable over tori as well as spheres in much wider regimes of different bending elasticity constants. As a result, toruslike micelles are predicted to be stable over conventional micelles, including rods, at large values of the effective bending constant k(eff) identical with 2k(c)+k(c), i.e. in the same region where infinite cylinders are expected to be observed. This result is consistent with the fact that toruslike micelles have usually been observed to coexist with large networks of branched cylinders.  相似文献   

3.
The spontaneous curvature (H(0)), mean and Gaussian bending constants (k(c) and k (c)), as defined in the well-known Helfrich expression, have been calculated from a detailed model for a thermodynamically open surfactant layer. The effect of head group cross-section area, surfactant tail length and electrolyte concentration for monovalent ionic surfactants have been investigated. Geometrical packing constraints subjected to the aggregated hydrocarbon tails and electrostatics are found to be the dominant contributions to H(0), k(c) and k (c). In addition, the transition from spherocylindrical micelles to vesicles were investigated in terms of the three parameters and the following simple expressions were derived as criteria for coexistence between micelles and vesicles H(0)=1/4 xi and N(ves)/N(mic)=exp[4 pi(k(c)+k (c))/kT], where xi is the thickness of the hydrocarbon part of the film and N(mic) and N(ves) the average aggregation numbers of micelles and vesicles, respectively. However, it is found that the ratio N(ves)/N(mic) is order of magnitudes too large for vesicles to form at all in charged single-surfactant systems where the surfactant head is of moderate size.  相似文献   

4.
A novel approach to rationalize micellar systems is expounded in which the structural behavior of tablet‐shaped micelles is theoretically investigated as a function of the three bending elasticity constants: spontaneous curvature (H0), bending rigidity (kc), and saddle‐splay constant (k?c). As a result, experimentally accessible micellar properties, such as aggregation number, length‐to‐width ratio, and polydispersity, may be related to the different bending elasticity constants. It is demonstrated that discrete micelles or connected cylinders form when H0>1/4ξ, where ξ is the thickness of a surfactant monolayer, whereas various bilayer structures are expected to predominate when H0<1/4ξ. Our theory predicts, in agreement with experiments, a transition from discrete globular (tablet‐shaped) micelles to a phase of ordered, or disordered, connected cylinders above a critical surfactant concentration. Moreover, a novel explanation for the mechanism of growth, from small globular to long rodlike or wormlike micelles, follows as a consequence from the theory. In accordance, polydisperse elongated micelles (large length‐to‐width ratio) form as the bending rigidity is lowered, approaching the critical point at kc=0, whereas monodisperse globular micelles (small length‐to‐width ratio) are expected to be present at large kc values. The spontaneous curvature mainly determines the width of tablet‐shaped or ribbonlike micelles, or the radius of disklike micelles, whereas the saddle‐splay constant primarily influences the size but not the shape of the micelles.  相似文献   

5.
Nonionic surfactants of the alkyloligoethylene oxide type form, with water and oil, a range of isotropic a liquid crystalline phases. We analyse the phase behaviour using the flexible surface model and argue that the strong temperature dependence is caused by the fact that the monolayer spontaneous curvature decreases strongly with increasing temperature. This is exemplified with the behaviour of bicontinuous microemulsions, showing a symmetric behaviour around the balanced state, globular microemulsions, behaving as hard spheres near the emulsification failure boundary, and sponge phases appearing when the monolayer spontaneous mean curvature is towards the abundant solvent. It is argued that there is a hierarchy of free energy contributions determining the preferred aggregate shape/phase. With a given oil-water ratio and a surfactant concentration that fixes the polar/apolar interfacial area, the most important free energy contribution comes from having a mean curvature close to the spontaneous curvature. The Gaussian curvature and the entropy terms become important when selecting between structures of similar mean curvature. At higher concentrations, surface forces and higher order elastic terms become significant.  相似文献   

6.
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bending elasticity decreases with increasing water dilution, in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles to be equilibrium structures. The measurements of the bending elasticity are confirmed by the transition of the lamellar phase of CTAT/SDBS from a turbid, viscoelastic gel to a translucent fluid as the water fraction is decreased below 40 wt %. Freeze-fracture electron microscopy shows that the gel is characterized by spherulite defects made possible by spontaneous bilayer curvature and low bending elasticity. This lamellar gel phase is common to a number of catanionic surfactant mixtures, suggesting that low bending elasticity and spontaneous curvature are typical of these mixtures that form spontaneous vesicles.  相似文献   

7.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   

8.
In this work, we examine the role of curvature and surfactant packing in controlling the structure of periodic silica/surfactant composites by driving such materials through a transformation from a hexagonal to a lamellar phase. We focus on how the interplay of desired packing and volume constraints dictates the resulting structures. In general, surfactants expand in a complex way upon heating, and this can cause a change in the optimal packing geometry. However, the presence of a rigid silica framework may prevent surfactants from reaching this preferred volume and/or curvature. Real-time in situ X-ray diffraction is used to monitor the structural evolution of these materials heated under hydrothermal treatments. Because the thermal-driven disorder of the surfactant tails drives the phase transition, we examine four types of composites with varying tail density. Ordinarily, composites consist of surfactants with one 20-carbon tail and one positively charged ammonium headgroup. Tail density is varied by replacing a small amount (0-16%) of these single-tail, single-head surfactants with single-tail, double-head 'gemini' surfactants. A greater head--tail ratio indeed produces different results, causing the phase transition to occur at higher temperatures. Using simple geometric models to gain better understanding of our experimental results, we find that, while both unfavorable curvature and limited volume may exist for the surfactants in these composites, the constrained curvature appears to be the dominant effect in driving structural rearrangement.  相似文献   

9.
The relationship between the properties of surfactant monolayers at oil-water interfaces and the phase behaviour in bulk of mixtures of oil + water + surfactant is discussed. Such monolayer properties include the spontaneous curvature, co the interfacial tension, I γ, the elasticity K (or rigidity) associated with the mean curvature, and the elasticity K associated with the Gaussian curvature. The model system chosen for investigation is the anionic surfactant AOT + aqueous NaCl + n-alkane at 20°C. In such systems, inversion of microemulsion type from oil-in-water (o/w) to water-in-oil (w/o) is possible with increasing electrolyte concentration. The tension, γ, passes through an ultralow minimum value at conditions corresponding to the formation of three phases. Using small angle neutron scattering, we have determined the structure of surfactant-rich third phases (co ~ 0) formed with the different alkanes. Lamellar phases consisting of surfactant monolayers separated alternately by oil and water appear with short alkanes, whereas L3 and bicontinuous phases form in systems containing longer alkanes. The bending elasticity K has been measured for planar monolayers at the oil-water interface by ellipsometry. K is independent of salt concentration but depends markedly on alkane chain length N, falling from ~ 1 kBT for N < 11 to ~0.1 kBT for N = 14. This is discussed in terms of the differing extents of oil penetration into the surfactant chains. Higher rigidities favouring lamellar phases and lower rigidities favouring bicontinuous microemulsions are in line with the theoretical predictions of de Gennes and Taupin. Estimates of the constant K have been obtained in droplet microemulsions (w/o) from a knowledge of their size, K and γ. The sign of the constant is in agreement with the geometry of the phases formed in three phase systems. Finally, the ideas and concepts developed in the oil-water systems described above are used to explain the wetting behaviour by alkanes of AOT monolayers at the air-water surface.  相似文献   

10.
We have used dissipative particle dynamics to simulate amphiphilic monolayers on the interface between oil and water. An ultralow interfacial tension is imposed by means of Monte Carlo to resemble the amphiphilic films that separate oil and water regions in microemulsions. We calculate the bending modulus by analyzing the undulation spectrum. By varying the surfactant chain length and topology we investigate the effect of surfactant structure and composition of the monolayer on the bending moduli. We find that increasing the thickness has a larger effect than increasing the density of the layer. This follows from the observations that at a given interfacial tension, the bending modulus increases with chain length and is larger for linear than branched surfactants. The increase with chain length is approximately linear, which is slower than the theoretical predictions at a fixed area. We also investigated a binary mixture of short and long surfactants compared to pure layers of the same average chain length. We find a roughly linear decrease in bending modulus with mole fraction of short surfactants. Furthermore, the mixed film has a lower bending modulus than the corresponding pure film for all mole fractions. Linking the bending moduli to the structure of the surfactants is an important step in predicting the stability of microemulsions.  相似文献   

11.
Amphipathic alpha-helical peptides are often ascribed an ability to induce curvature stress in lipid membranes. This may lead directly to a bending deformation of the host membrane, or it may promote the formation of defects that involve highly curved lipid layers present in membrane pores, fusion intermediates, and solubilized peptide-micelle complexes. The driving force is the same in all cases: peptides induce a spontaneous curvature in the host lipid layer, the sign of which depends sensitively on the peptide's structural properties. We provide a quantitative account for this observation on the basis of a molecular-level method. To this end, we consider a lipid membrane with peptides interfacially adsorbed onto one leaflet at high peptide-to-lipid ratio. The peptides are modeled generically as rigid cylinders that interact with the host membrane through a perturbation of the conformational properties of the lipid chains. Through the use of a molecular-level chain packing theory, we calculate the elastic properties, that is, the spontaneous curvature and bending stiffness, of the peptide-decorated lipid membrane as a function of the peptide's insertion depth. We find a positive spontaneous curvature (preferred bending of the membrane away from the peptide) for small penetration depths of the peptide. At a penetration depth roughly equal to half-insertion into the hydrocarbon core, the spontaneous curvature changes sign, implying negative spontaneous curvature (preferred bending of the membrane toward the peptide) for large penetration depths. Despite thinning of the membrane upon peptide insertion, we find an increase in the bending stiffness. We discuss these findings in terms of how the peptide induces elastic stress.  相似文献   

12.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

13.
Adsorbed polymer and polyelectrolyte layers on colloidal silica nanoparticles have been studied in the presence of various salts and surfactants using photon correlation spectroscopy and solvent relaxation NMR. Poly(ethylene oxide) (PEO; molar mass 103.6 kg mol (-1)) adsorbed with a relatively high affinity and gave a layer thickness of 4.2 +/- 0.2 nm. While the nonionic surfactant used only increased this thickness slightly, anionic surfactants had a much greater effect, mainly due to repulsions between adsorbed aggregates, leading to expansion of the layer. A nonionic/anionic surfactant mixture was also tested and resulted in a larger increase in layer thickness than any of the individual surfactants. The dominant factor on addition of salt was generally the reduced solvency of PEO, which resulted in a further increase in the layer thickness but in some cases caused flocculation. This was not the case when the surfactant was sodium dodecylbenzenesulfonate; instead screening of the intermicellar repulsions possibly combined with surfactant-cation binding resulted in a reduction in the layer thickness. In comparison the affinity between silica and sodium polystyrenesulfonate was very weak. Anionic surfactants and salts did not noticeably increase the strength of adsorption, but instead encouraged flocculation. The situation was different with a nonionic surfactant, which was able to adsorb to silica itself and apparently facilitated a degree of polyelectrolyte adsorption as well.  相似文献   

14.
Using molecular dynamics simulation, we performed theoretical calculations on the curvature constant and edge energy of bilayers of salt-free, zero-charged, cationic and anionic (catanionic) surfactant vesicles composed of alkylammonium cations (C(m)(+)) and fatty acid anions (C(n)(-)). Both the minimum size and edge energy of vesicles were calculated to examine the relation between the length of the surfactant molecules and the mechanical properties of the catanionic bilayers. Our simulation results clearly demonstrate that, when the chain lengths of the cationic and anionic surfactants are equal, both the edge energy and the rigidity of the catanionic bilayers increase dramatically, changing from around 0.36 to 2.77 kBT·nm(-1) and around 0.86 to 6.51 kBT·nm(-1), respectively. For the smallest catanionic vesicles, the curvature is not uniform and the surfactant molecules adopt a multicurvature arrangement in the vesicle bilayers. We suspect that the multicurvature bending of bilayers of catanionic vesicles is a common phenomenon in rigid bilayer systems, which could aid understanding of ion transport through bilayer membranes.  相似文献   

15.
Rychlovský P  Nemcová I 《Talanta》1988,35(3):211-214
The effect of a cationic, an anionic and a non-ionic surfactant on the acid-base equilibria of the phenothiazine derivatives, diethazine hydrochloride and chlorpromazine hydrochloride, has been studied. It has been found that the presence of cationic and non-ionic surfactants strongly enhances the dissociation of the two derivatives, whereas the anionic surfactant decreases the dissociation constant. These effects are in agreement with a theory based on a pseudophase, ion-exchange model of micelles. From the dissociation-constant values as a function of the surfactant concentration, the binding constants for diethazine and chlorpromazine with the surfactants Septonex and sodium dodecylsulphate have been calculated. The ability of cationic surfactants to solubilize the free bases of the phenothiazine derivatives and to increase their dissociation constants has been utilized to develop a new method for alkalimetric determination of the derivatives in a micellar medium. The method has been applied to determination of the content of the active component in pharmaceutical preparations.  相似文献   

16.
The rate of N-glutaryl-L-phenylalanine p-nitroanilide hydrolysis catalyzed by alpha-chymotripsin has been measured in aqueous solutions of cetyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and dodecyltrimethylammonium bromide at concentrations below and above their critical micellar concentrations (CMC). For the three surfactants considered superactivity was observed, with maximum catalytic efficiencies taking place near the corresponding CMCs. The effect of the surfactants after the CMCs is mostly due to a decreased thermodynamic activity of the substrate due to its incorporation into the micelles. After addition of the surfactants, the Michaelis constant values (corrected to take into account the free substrate concentration) tend to decrease, passing through an ill defined minimum, afterwards reaching a constant value. The catalytic rate constants show the same profiles that the catalytic efficiency, being maxima near the surfactants CMCs. This maximum is more important for the surfactant having the shorter tail. This result is explained by considering that the hydrophobicity of the surfactant influences more the CMC than its association to the enzyme.  相似文献   

17.
Hexadecane-in-water emulsion droplets were formed in a homogeniser in the presence of a mixture of an anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactants of various chain lengths [nonylphenol ethoxylate (C9φEN, N=100, 40 and 30) or an alcohol ethoxylate (Brij35)]. The dynamic mobility of the oil droplets was then measured using a flow-through version of an AcoustoSizer. Large changes were observed in the dynamic mobility of the particles formed with the mixed surfactants compared to particles formed with SDS alone. O'Brien's “gel layer” model was employed to interpret the data. The characteristics of the adsorbed layer appeared to be similar whether the nonionic surfactant was adsorbed concurrently with the SDS as the emulsion formed or was merely added afterwards to the emulsion established. The particle size, the charge and the molar fraction of SDS had virtually no effect. The layers formed with the nonionic surfactants decreased in thickness with decreasing molecular weight as expected. Passage through the homogeniser itself had no effect on the properties of the largest nonionic surfactant and, hence, on the adsorption layer formed with it. Received: 4 October 2000 Accepted: 16 October 2000  相似文献   

18.
The effect of varying surfactant chain length (C12, C14, C16, C18) on the alkaline hydrolysis of the organophosphorus pesticide fenitrothion was determined for the following series of inert counterion cationic surfactants: dodecyltrimethylammonium bromide (DTABr), tetradecyltrimethylammonium bromide (TTABr), hexadecyltrimethylammonium bromide (CTABr), and octadecyltrimethylammonium bromide (OTABr). Plots of kobs versus [surfactant] at constant [KOH] showed saturation behavior at low total [Br-], and (constrained) S-shaped curvature was observed at high total [Br-]. kobs values increased with increasing surfactant chain length but decreased with added KBr. For systems exhibiting saturation behavior, further analysis of the results using the PPIE treatment as modified to account for HO-/Br- exchange allowed the evaluation of substrate binding constants, KS, and micellar rate constants, k2m. The binding constants increased with chain length (hydrophobicity), but ionic strength had no effect on KS. Meanwhile, because of the increased KS values as the surfactant chain length increased, the rate enhancements observed for fenitrothion degradation correspondingly increased. However, rate enhancements decreased with ionic strength because reactive counterions could not compete against the bromide anion for micellar binding sites. Low k2m/k2w ratios revealed that the observed rate enhancements were due to the so-called concentration effect rather than true catalysis. Finally, where the PPIE model failed (displaying S-shaped curvature), our results support the intervention of sphere-to-rod transitions that are favored at high ionic strength (>0.01 M Br-) and lower temperatures as the cause of the S-shaped curvature.  相似文献   

19.
环糊精由于其特殊结构可与众多物质(客体分子)形成包结物,这种包结物在化学理论研究、化工工业、农业及医药等领域有广阔的应用前景[1、2],因而受到人们极大的关注.人们用电导法、核磁技术、表面张力法等研究了环糊精与阴离子表面活性剂的相互作用,但这些方法得出的结果很...  相似文献   

20.
Currently, the design of microemulsions is focussed on the formulation of environmentally compatible systems formed by non-harmful amphiphiles and oils. The use of sugar-based surfactants allows the design of microemulsions where, instead of the temperature, the addition of short- or medium-chain alcohols tunes the curvature of the amphiphilic interface. In this work, the resulting temperature stability of a sugar surfactant and rapeseed methyl ester based bicontinuous microemulsion is exploited to study the influence of temperature variations on the bending elastic constant κ. Quasi-elastic scattering of light and neutrons is used to separate long-range collective motions and local thermally excited undulations of the interface. κ in units of kT is found to be independent of temperature over a wide range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号