首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for characterizing texture from measurements of ultrasonic wave velocities is proposed. In polycrystalline aggregates, ultrasonic wave velocities are strongly affected by orientation distribution coefficients (ODCs), which are usually used to describe the degree of preferred grain orientation in textured materials. In this work, velocities of longitudinal and transverse waves propagating into aluminum alloy 6061 were measured under pure shear, simple shear and uniaxial tension. From the measured ultrasonic wave velocities, the ODCs W400 and W420 were calculated to infer the deformation-induced texture. The predicted pole figures, obtained using ultrasonic velocities, were in good qualitative agreement with the finite element polycrystal model analyzed pole figures.  相似文献   

2.
This paper presents results from a program of experimental studies of ignition induced by the interaction of an initially planar shock wave with an obstacle in its path. With the aid of pressure measurements, spark schlieren photography and smoked foil techniques it is shown how, given favourable initial conditions, the two-dimensional multiple shock reflection and diffraction can promote ignition and transition to detonation in reactive gaseous mixtures. Comparison of the results with those of a non-reactive gas distinguishes the gas dynamic and chemical processes involved, and experimentally determined detonation cell sizes are compared with values predicted using chemical kinetic rate data. The systems investigated were argon, air, propane-air, propane-oxygen-argon and ethylene-oxygen-argon. Received: 3 December 1998 / Accepted: 27 October 1999  相似文献   

3.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

4.
A Finite Element (FE) model is proposed to study the interaction between in-plane elastic waves and a crack of different orientations. The crack is modeled by an interface of unilateral contact with Coulombs friction. These contact laws are modified to take into account a pre-stress σ0σ0 that closes the crack. Using the FE model, it is possible to obtain the contact stresses during wave propagation. These contact stresses provide a better understanding of the coupling between the normal and tangential behavior under oblique incidence, and explain the generation of higher harmonics. This new approach is used to analyze the evolution of the higher harmonics obtained as a function of the angle of incidence, and also as a function of the excitation level. The pre-stress condition is a governing parameter that directly changes the nonlinear phenomenon at work at the interface and therefore the harmonic generation. The diffracted fields obtained by the nonlinear and linear models are also compared.  相似文献   

5.
The interaction of two-dimensional water waves with a fixed submerged cylinder is studied using a finite difference scheme with boundary-fitted co-ordinates. A mixed Eulerian–Lagrangian (MEL) formulation is used to satisfy the fully non-linear free surface conditions. The diffraction of small-amplitude water waves by a cylinder is examined for various wavelengths and amplitudes of the incident wave. Fourier analyses of the incident and diffracted waves are performed to determine their spectra. An example of a large-amplitude wave breaking over a cylinder is also studied. The non-linear numerical solutions are compared with those of experiments and linear theory where appropriate.  相似文献   

6.
This research describes a nondestructive method for the quantitative estimation of property variations due to damage in metal materials. The method employs a damage mechanics model, which accounts for stiffness degradation and damage evolution of a metal medium with a measurement of ultrasonic velocity. In order to describe the progressive deterioration of materials prior to the initiation of macrocracks, we have developed a new damage mechanics model. Thereafter, a finite element model valid for numerically describing such damage process has been developed by ABAQUS/Standard code, and correlations between damage state, elastic stiffness and plastic strain could be found by the results of the finite element simulation. The property variations due to damage evolution are calculated based on the Mori–Tanaka theory, and then the ultrasonic velocity can be predicted by Christoffel’s equation. When the measured velocity is coupled with the theoretically predicted velocity, the unknown damage variable is solved, from which other residual properties are determined by the predictions of damage model. The proposed technique is performed on type 304 stainless steel bars. The numerical results obtained by the simulation were compared with experimental ones in order to verify the validity of the proposed finite element model and good agreement was found. It is shown that the damaged properties of metals can be estimated accurately by the proposed method.  相似文献   

7.
Waves generated by submarine landslides are treated as three-dimensional flows of a perfect incompressible fluid. For the solution of the Cauchy-Poisson problem a time-discretization is applied which leads at each time step to a non-homogeneous free surface condition; the solution is then divided into two parts. The first part, subject to the true free surface condition, is computed in a simplified domain with constant depth. The second part involves a homogeneous free surface condition, a corrected bottom condition and the true bathymetry. In the case of constant depth, unconditional stability of the time discretization is derived. In the case of variable depth, mass and energy conservation is derived. Numerical results are presented. Comparison is made with other methods for the generation of axisymmetric waves. The transient propagation along a rectilinear coast is studied, including a comparison between two different bathymetries; trapping of energy is observed.  相似文献   

8.
This article presents a new approach to designing non-reflective boundary (NRB) for inhibiting Lamb wave reflections at structural boundaries. Our NRB approach can be effectively and conveniently implemented in commercial finite element (FE) codes. The paper starts with a review of the state of the art: (a) the absorbing layers by increasing damping (ALID) approach; and (b) the Lysmer–Kuhlemeyer absorbing boundary conditions (LK ABC) approach is briefly presented and its inadequacy for Lamb wave applications is explained. Hence, we propose a modified Lysmer–Kuhlemeyer approach to be used in the NRB design for Lamb wave problems; we call our approach MLK NRB. The implementation of this MLK NRB was realized using the spring–damper elements which are available in most commercial FE codes. Optimized implementation parameters are developed in order to achieve the best performance for Lamb wave absorption. Our MLK NRB approach is compared with the state of the art ALID and LK ABC methods. Our MLK NRB shows better performance than ALID and LK ABC for all Lamb modes in the thin-plate structures considered in our examples. Our MLK NRB approach is also advantageous at low frequencies and at cut-off frequencies, where extremely long wavelengths exist. A comprehensive study with various design parameters and plate thicknesses which illustrates the advantages and limitations of our MLK NRB approach is presented. MLK NRB applications for both transient analysis in time domain and harmonic analysis in frequency domain are illustrated. The article finishes with conclusions and suggestions for future work.  相似文献   

9.
The paper presents an efficient methodology for the analysis of large-scale structural problems with geometrical non-linearity. A finite element based tool is developed, taking advantage of the analytical formulation of the stiffness matrix of a beam element, which is explicitly separated in linear and non-linear terms. The methodology proposes the substitution of the typical Newton-type non-linear analysis procedure, by a series of incremental linear analyses and a set of ‘fictitious’ forces, replacing the non-linear effect. The proposed technique is demonstrated in several structural problems that exhibit geometrical non-linear behaviour, with satisfactory results. The method’s advantages on the analysis of large-scale non-linear problems are discussed, as well as the limitations and the further development that is required.  相似文献   

10.
A two-dimensional (in-plane) numerical model for surface waves propagation based on the non-linear dispersive wave approach described by Boussinesq-type equations, which provide an attractive theory for predicting the depth-averaged velocity field resulting from that wave-type propagation in shallow water, is presented. The numerical solution of the corresponding partial differential equations by finite-difference methods has been the subject of several scientific works. In the present work we propose a new approach to the problem: the spatial discretization of the system composed by the Boussinesq equations is made by a finite element method, making use of the weighted residual technique for the solution approach within each element. The model is validated by comparing numerical results with theoretical solutions and with results obtained experimentally.  相似文献   

11.
The aim of this study is to investigate the leaky and non-leaky behaviours of guided waves, between the composite skin and the core in CF/EP sandwich structures, focusing on the fundamental symmetric like and anti-symmetric like guided wave modes and Rayleigh waves. In investigating the core effect on the guided wave propagation different types of cores are used, namely Nomex honeycomb (HRH 10 1/8-3) 10 and 20 mm in thickness and foam (Divinycell®  PVC). The behaviour of the guided wave modes is characterised and the conversion mechanism to the Rayleigh wave is investigated. Further, leaky and non-leaky behaviours of guided waves upon interacting with debonded areas are explored, where the ability of guided waves to identify debonding of different sizes was assessed. Finite element analysis simulations are presented to support the experimental analysis, where propagation of ultrasonic waves and their interaction with debonded areas are quantitatively examined.  相似文献   

12.
This paper presents the finite element analysis of an interaction problem involving water, soil, balloon and pile. A building with friction piles is considered, and balloons are introduced to the top of piles. To control the vertical displacement of the building, water is injected into or removed from the balloons. The two-dimensional incompressible Navier-Stokes equation is introduced, and the ALE (Arbitrary Lagrangian Eulerian) method is applied to the water flow analysis. The FS (Fractional Step) method is also applied in the finite element formulation. The soil, which is assumed as a linear elastic body, is subjected to the deformation analysis. The balloon and pile are assumed as a linear elastic truss and a rigid frame, and the deformation analysis is also performed. All the components are discretized by the finite element method in space and are interactively solved by taking into account continuity conditions of traction and displacement.  相似文献   

13.
Recently, a discontinuous Galerkin method with plane wave basis functions and Lagrange multiplier degrees of freedom was proposed for the efficient solution of the Helmholtz equation in the mid-frequency regime. This method was fully developed however only for regular meshes, and demonstrated only for interior Helmholtz problems. In this paper, we extend it to irregular meshes and exterior Helmholtz problems in order to expand its scope to practical acoustic scattering problems. We report preliminary results for two-dimensional short wave problems that highlight the superior performance of this discontinuous Galerkin method over the standard finite element method.  相似文献   

14.
A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks. Numerical results are presented for the dynamic stress intensity factors. The effects of the wave type, wave frequency, wave incidence angle, and crack spacing on the dynamic stress intensity factors are analyzed in detail. The project supported by the Committee of Science and Technology of Shanghai and Tongji University  相似文献   

15.
16.
We introduce a perfectly matched layer approach for finite element calculations of diffraction by metallic surface-relief gratings. We use a non-integrable absorbing function which allows us to use thin absorbing layers, which reduces the computational time when simulating this type of structure. In addition, we numerically determine the best choice of the absorbing layer parameters and show that they are independent of the wavelength.  相似文献   

17.
This paper presents a continuum damage model based on two mechanisms: decohesion between fillers and matrix at a micro-scale followed by a crack nucleation at a macro-scale. That scenario was developed considering SEM observations and an original experimental procedure based on simple shear and tension specimens. Damage accumulation is related to fatigue life using the continuum damage mechanics (CDM). The material behavior is investigated using the statistical framework introduced by Martinez et al. (2011). A Finite Element implementation is proposed and some numerical examples are provided.  相似文献   

18.
It is demonstrated how a micromorphic plasticity theory may be formulated on the basis of multiplicative decompositions of the macro- and microdeformation gradient tensor, respectively. The theory exhibits non-linear isotropic and non-linear kinematic hardening. The yield function is expressed in terms of Mandel stress and double stress tensors, appropriately defined for micromorphic continua. Flow rules are derived from the postulate of Il’iushin and represent generalized normality conditions. Evolution equations for isotropic and kinematic hardening are introduced as sufficient conditions for the validity of the second law of thermodynamics in every admissible process. Finally, it is sketched how isotropic damage effects may be incorporated in the theory. This is done for the concept of effective stress combined with the hypothesis of strain equivalence.  相似文献   

19.
Dynamics of thick interfaces separating different regions of elastic materials is investigated. The interfaces are made up of elastic layers or inertial truss structures. The study of evanescent mode propagation and transmission properties reveals that the discrete nature of structural interfaces introduces unusual filtering characteristics in the system, which cannot be obtained with multilayered interfaces. An example of metamaterial is presented, namely, a planar structural interface, which acts as a flat lens, therefore evidencing the negative refraction and focussing of elastic waves.  相似文献   

20.
Structural health monitoring (SHM) of any mechanical component is compulsory for its efficient and long-term performance. One of the major challenges to apply SHM technique in real-time inspections is variation in environmental and operating conditions (EOCs). Sometimes the effect of this variation in EOCs is so severe that it influences the SHM system’s response and reduces the accuracy of the inspection process. The goal of current research is to investigate experimentally the impact of environmental temperature on the ultrasonic guided wave signal during damage detection. According to the characteristic of breathing phenomenon of fatigue crack caused by the applied temperature (30 °C–180 °C) under operation condition, behavior of reflection and transmission signal is analyzed in terms of amplitude and group velocity. Based on experiment findings, a wave velocity function has been generated in the Matlab® environment to compute the velocity of acquired signal considering the effect of both temperature and excitation frequency. A corresponding sequence curve is drawn which illustrates that the proposed function is valid when the operating temperature is less than 130 °C because sensor bonding’s characteristics are affected by the further increment in temperature and consequently it would become difficult to illuminate the sole impact of temperature on damage detection results. Impact of temperature on examined material properties and sensor’s bonding strength is also observed in the current study. Analysis of dispersion curves is performed to examine the individual behavior of S0 and A0 wave modes with temperature and to determine the temperature invariant points to reduce the influence of environmental temperature in SHM. Hence current study not only evaluates the impact of temperature on damage detection but also provides an optimal baseline for thermal attenuation in real-time ultrasonic guided wave inspections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号