首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the computation of scattering data and of the Green function for the one‐dimensional Schrödinger operator with a decaying potential is presented. It is based on representations for the Jost solutions in the case of a compactly supported potential obtained in terms of Neumann series of Bessel functions (NSBF). The representations are used for calculating a complete orthonormal system of generalized eigenfunctions of the operator H, which in turn allow one to compute the scattering amplitudes and the Green function of the operator H?λ with .  相似文献   

2.
用Backus-Gilbert方法求解声波散射问题   总被引:1,自引:0,他引:1  
利用位势理论将散射问题的外边界问题转化为第一类边界积分方程求解,再利用Backus-Gilbert方法给出了二维空间的数值结果,与Tikhonov正则化方法比较,虽然精度稍差一些,但是计算方法和计算机实现比较简单.  相似文献   

3.
The effect of evanescent modes on the scattering and near-trappingof small-amplitude waves over axisymmetric topography is investigated.A two-stage numerical implementation, which facilitates an examinationof the resonant frequencies associated with near-trapping, isdeveloped. This is achieved in the latter stage of the procedureby dealing with the progressing and decaying waves separately. Numerical results are given for a selection of bed shapes, andit is found that the evanescent waves can have a significanteffect on scattering. Numerical evidence is found that, forthe selection of bed profiles considered, no new resonant frequenciesare introduced by the inclusion of the decaying wave components,but that the inclusion of these decaying waves does improveprevious approximations to resonant frequencies.  相似文献   

4.
We extend the abstract time‐dependent scattering theory of C.H. Wilcox to the case of elastic waves. Most of the results are proved with the minimal assumption that the obstacle satisfies the energy local compactness condition (ELC). This holds especially for the existence and unitarity of the wave operators. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
We consider the scattering of a time-harmonic electromagnetic wave by a perfectly and imperfectly conducting infinite cylinder at oblique incidence respectively. We assume that the cylinder is embedded in a homogeneous chiral medium and the cylinder is parallel to the z axis. Since the x components and y components of electric field and magnetic field can be expressed in terms of their z components, we can derive from Maxwell's equations and corresponding boundary conditions that the scattering problem is modeled as a boundary value problem for the z components of electric field and magnetic field. By using Rellich's lemma and variational approach, the uniqueness and the existence of solutions are justified.  相似文献   

6.
We consider the numerical solution of linear systems arising from the discretization of the electric field integral equation (EFIE). For some geometries the associated matrix can be poorly conditioned making the use of a preconditioner mandatory to obtain convergence. The electromagnetic scattering problem is here solved by means of a preconditioned GMRES in the context of the multilevel fast multipole method (MLFMM). The novelty of this work is the construction of an approximate hierarchically semiseparable (HSS) representation of the near-field matrix, the part of the matrix capturing interactions among nearby groups in the MLFMM, as preconditioner for the GMRES iterations. As experience shows, the efficiency of an ILU preconditioning for such systems essentially depends on a sufficient fill-in, which apparently sacrifices the sparsity of the near-field matrix. In the light of this experience we propose a multilevel near-field matrix and its corresponding HSS representation as a hierarchical preconditioner in order to substantially reduce the number of iterations in the solution of the resulting system of equations.  相似文献   

7.
A theoretical formulation to study the problem of scattering of Rayleigh waves due to the presence of a rigid plane strip in a deep ocean is presented. A rigid plane strip (0 ≤z ≤ H, 0 ≤x ≤ l) is fixed in the surface of the ocean occupyingz ≥ 0. Fourier transformation and Wiener-Hopf technique are used to arrive at the solution. The scattered Rayleigh waves behave as cylindrical waves emerging out of the corner of the strip and its image in the free surface of the ocean. The scattered waves are obtained in terms of Bessel functions whose behaviour near and far from the strip is well-known. The numerical calculations for the scattered waves show that their amplitude increases rapidly for a small increase in the value of the wave number. Scattering of Rayleigh waves due to a thin plane vertical barrier and a thin barrier in the free surface of the ocean has been considered as the special cases.  相似文献   

8.
In this paper, we are concerned with the error analysis for the finite element solution of the two-dimensional exterior Neumann boundary value problem in acoustics. In particular, we establish explicit priori error estimates in H1 and L2- norms including both the effect of the truncation of the DtN mapping and that of the numerical discretization. To apply the finite element method (FEM) to the exterior problem, the original boundary value problem is reduced to an equivalent nonlocal boundary value problem via a Dirichlet-to-Neumann (DtN) mapping represented in terms of the Fourier expansion series. We discuss essential features of the corresponding variational equation and its modification due to the truncation of the DtN mapping in appropriate function spaces. Numerical tests are presented to validate our theoretical results.  相似文献   

9.
Let Ω denote an unbounded domain in ?n having the form Ω=?l×D with bounded cross‐section D??n?l, and let m∈? be fixed. This article considers solutions u to the scalar wave equation ?u(t,x) +(?Δ)mu(t,x) = f(x)e?iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper introduces a novel boundary integral equation (BIE) method for the numerical solution of problems of planewave scattering by periodic line arrays of two-dimensional penetrable obstacles. Our approach is built upon a direct BIE formulation that leverages the simplicity of the free-space Green function but in turn entails evaluation of integrals over the unit-cell boundaries. Such integrals are here treated via the window Green function method. The windowing approximation together with a finite-rank operator correction—used to properly impose the Rayleigh radiation condition—yield a robust second-kind BIE that produces superalgebraically convergent solutions throughout the spectrum, including at the challenging Rayleigh–Wood anomalies. The corrected windowed BIE can be discretized by means of off-the-shelf Nyström and boundary element methods, and it leads to linear systems suitable for iterative linear algebra solvers as well as standard fast matrix–vector product algorithms. A variety of numerical examples demonstrate the accuracy and robustness of the proposed methodology.  相似文献   

11.
** Corresponding author. Email: biren{at}isical.ac.in The problem of water wave scattering by two sharp discontinuitiesin the surface boundary conditions involving infinitely deepwater is examined here by reducing it to two coupled Carleman-typesingular integral equations. The discontinuities arise due tothe presence of two types of non-interacting materials floatingon the surface, one type being in the form of an infinite stripof finite width sandwiched between another type. The non-interactingmaterials form an inertial surface which is a mass-loading modelof floating ice and is regarded as a material of uniform surfacedensity having no elastic property. The two integral equationsare solved approximately by assuming the two discontinuitiesto be widely separated, and approximate analytical expressionsfor the reflection and transmission coefficients are also obtained.This problem has applications in wave propagation through stripsof frazil or pancake ice modelled as floating inertial surfaces.Numerical results for the reflection coefficient are depictedgraphically against the wave number for different values ofthe surface densities of the two types of floating materials.The main feature of the graphs is the oscillatory nature ofthe reflection coefficient and occurrence of zero reflectionfor an increasing sequence of discrete values of the wave number.A direct analytical treatment to solve the integral equationsnumerically, when the separation length between the two discontinuitiesis arbitrary, is also indicated. For the case of more than twodiscontinuities the solution methodology of the correspondingscattering problem is described briefly.  相似文献   

12.
For the semi-linear (higher order) wave equation and the nonlinear (higher order) Schrödinger equation, we show that the scattering operators map a band in Hs into Hs if the nonlinearities have (sub-)critical powers in Hs. The smoothness of the scattering operators and the uniform boundedness of strong solutions for the defocusing NLS equation are also shown provided that the nonlinearities have subcritical growth in H1. Moreover, the spatial decaying behavior of solutions in energy space for the defocusing NLS equation are obtained.  相似文献   

13.
In this paper we present an error analysis for a high-order accurate combined Dirichlet-to-Neumann (DtN) map/finite element (FE) algorithm for solving two-dimensional exterior scattering problems. We advocate the use of an exact DtN (or Steklov–Poincaré) map at an artificial boundary exterior to the scatterer to truncate the unbounded computational region. The advantage of using an exact DtN map is that it provides a transparent condition which does not reflect scattered waves unphysically. Our algorithm allows for the specification of quite general artificial boundaries which are perturbations of a circle. To compute the DtN map on such a geometry we utilize a boundary perturbation method based upon recent theoretical work concerning the analyticity of the DtN map. We also present some preliminary work concerning the preconditioning of the resulting system of linear equations, including numerical experiments.  相似文献   

14.
This paper is concerned with efficient numerical methods for solving the time-dependent scattering and inverse scattering problems of acoustic waves in a locally perturbed half-plane. By symmetric continuation, the scattering problem is reformulated as an equivalent symmetric problem defined in the whole plane. The retarded potential boundary integral equation method is modified to solve the forward problem. Then we consider the inverse scattering problem of determinating the local perturbation from the measured scattered data. The time domain linear sampling method is employed to deal with the inverse problem. The computation schemes proposed in this paper are relatively simple and easy to implement. Several numerical examples are presented to show the effectiveness of the proposed methods.  相似文献   

15.
In this paper, we study the global well‐posedness and scattering theory of the solution to the Cauchy problem of a generalized fourth‐order wave equation where if d ?4, and if d ?5. The main strategy we use in this paper is concentration‐compactness argument, which was first introduced by Kenig and Merle to handle the scattering problem vector so as to control the momentum. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Optimal impedance control for the Helmholtz equation in an unbounded domain is studied. Asymptotics of the optimal control with respect to a regularization parameter are constructed.  相似文献   

17.
Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time‐harmonic scattering, or nearly time‐harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non‐time‐harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time‐dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi‐frequency data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
We obtain an explicit formula for the diagonal singularities of the scattering amplitude for the Dirac equation with short‐range electromagnetic potentials. Using this expansion we uniquely reconstruct an electric potential and magnetic field from the high‐energy limit of the scattering amplitude. Moreover, supposing that the electric potential and magnetic field are asymptotic sums of homogeneous terms we give the unique reconstruction procedure for these asymptotics from the scattering amplitude, known for some energy E. Furthermore, we prove that the set of the averaged scattering solutions to the Dirac equation is dense in the set of all solutions to the Dirac equation that are in L2(Ω), where Ω is any connected bounded open set in with smooth boundary, and we show that if we know an electric potential and a magnetic field for , then the scattering amplitude, given for some energy E, uniquely determines these electric potential and magnetic field everywhere in . Combining this uniqueness result with the reconstruction procedure for the asymptotics of the electric potential and the magnetic field we show that the scattering amplitude, known for some E, uniquely determines a electric potential and a magnetic field, that are asymptotic sums of homogeneous terms, which converges to the electric potential and the magnetic field respectively. Moreover, we discuss the symmetries of the kernel of the scattering matrix, which follow from the parity, charge‐conjugation and time‐reversal transformations for the Dirac operator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We present a new integral equation for solving the Maxwell scattering problem against a perfect conductor. The very same algorithm also applies to sound-soft as well as sound-hard Helmholtz scattering, and in fact the latter two can be solved in parallel in three dimensions. Our integral equation does not break down at interior spurious resonances, and uses spaces of functions without any algebraic or differential constraints. The operator to invert at the boundary involves a singular integral operator closely related to the three-dimensional Cauchy singular integral, and is bounded on natural function spaces and depend analytically on the wave number. Our operators act on functions with pairs of complex two-by-two matrices as values, using a spin representation of the fields.  相似文献   

20.
The paper considers the solution of the boundary value problem (BVP) consisting of the Helmholtz equation in the region D with a rigid boundary condition on ∂D and its reformulation as a boundary integral equation (BIE), over an infinite cylindrical surface of arbitrary smooth cross-section. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution of the integral equation and the corresponding boundary value problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号