首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the fourth‐order nonlinear Schrödinger equation with parameterized nonlinearity that is generalized from regular cubic‐quintic formulation in optics and ultracold physics scenario. We find the exact solution of the fourth‐order generalized cubic‐quintic nonlinear Schrödinger equation through modified F‐expansion method, identifying the particular bright soliton behavior under certain external experimental setting, with the system's particular nonlinear features demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The main aim of this article is to present some new exact solutions of the resonant nonlinear Schrödinger equation. These solutions are derived by using the generated exponential rational function method (GERFM). The kink‐type, bright, dark, and singular soliton solutions are reported, and several numerical simulations are also included. The calculations are carried out by Maple software. All of the solutions that are derived in this paper are believed to be new and have presumably not been reported in earlier publications.  相似文献   

3.
The (G′/G,1/G)‐expansion method and (1/G′)‐expansion method are interesting approaches to find new and more general exact solutions to the nonlinear evolution equations. In this paper, these methods are applied to construct new exact travelling wave solutions of nonlinear Schrödinger equation. The travelling wave solutions are expressed by hyperbolic functions, trigonometric functions and rational functions. It is shown that the proposed methods provide a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law. Abundant explicit and exact solutions of the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law are derived uniformly by using the first integral method. These exact solutions are include that of extended hyperbolic function solutions, periodic wave solutions of triangle functions type, exponential form solution, and complex hyperbolic trigonometric function solutions and so on. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial DEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
We consider the Cauchy problem for the third‐order nonlinear Schrödinger equation where and is the Fourier transform. Our purpose in this paper is to prove the large time asymptoitic behavior of solutions for the defocusing case λ > 0 with a logarithmic correction under the non zero mass condition Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
9.
We perform a multiple scale analysis on the fourth order nonlinear Schrödinger equation in the Hamiltonian form together with the Hamiltonian function. We derive, as amplitude equations, Korteweg‐de Vries flow equations in the bi‐Hamiltonian form with the corresponding Hamiltonian functions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
We show local existence of certain type of solutions for the Cauchy problem of the defocusing nonlinear Schrödinger equation with pure power nonlinearity, in various cases of open sets, unbounded or bounded. These solutions do not vanish at the boundary or at infinity. We also show, in certain cases, that these solutions are unique and global.  相似文献   

12.
In this paper, we consider the following perturbed nonlinear Schrödinger system with electromagnetic fields where N ≥ 3, 2 = 2N ∕ (N ? 2) is the Sobolev critical exponent; A is the real vector magnetic potential; and V (x), K(x), and H(s,t) are continuous functions. Under certain conditions on V, H, and K, we establish some new results on the existence of the least‐energy solutions (u?,v?) for small ? by using variational method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We consider a discrete‐time orthogonal spline collocation scheme for solving Schrödinger equation with wave operator. The scheme is proposed recently by Wang et al. (J Comput Appl Math 235 (2011), 1993–2005) and is showed to have high‐order convergence rate when a parameter θ in the scheme is not less than $\frac{1}{4}$. In this article, we show that the result can be extended to include $\theta\in(0,\frac{1}{4})$ under an assumption. Numerical example is given to justify the theoretical result. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
15.
The inverse scattering transform for the derivative nonlinear Schrödinger‐type equation is studied via the Riemann‐Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann‐Hilbert problem is established for the derivative nonlinear Schrödinger‐type equation. In the inverse scattering process, N‐soliton solutions of the derivative nonlinear Schrödinger‐type equation are obtained by solving Riemann‐Hilbert problems corresponding to the reflectionless cases. Moreover, the dynamics of the exact solutions are discussed.  相似文献   

16.
We study the defocusing nonlinear Schrödinger equation in the quarter plane with asymptotically periodic boundary values. We use the unified transform method, also known as the Fokas method, and the Deift‐Zhou nonlinear steepest descent method to construct solutions in a sector close to the boundary whose leading behavior is described by a single exponential plane wave. Furthermore, we compute the subleading terms in the long‐time asymptotics of the constructed solutions.  相似文献   

17.
In the present paper, exact solutions of fractional nonlinear Schrödinger equations have been derived by using two methods: Lie group analysis and invariant subspace method via Riemann‐Liouvill derivative. In the sense of Lie point symmetry analysis method, all of the symmetries of the Schrödinger equations are obtained, and these operators are applied to find corresponding solutions. In one case, we show that Schrödinger equation can be reduced to an equation that is related to the Erdelyi‐Kober functional derivative. The invariant subspace method for constructing exact solutions is presented for considered equations.  相似文献   

18.
An energy‐preserving scheme is proposed for the three‐coupled nonlinear Schrödinger (T‐CNLS) equation. The T‐CNLS equation is rewritten into the classical Hamiltonian form. Then the spatial variable is discretized by using high‐order compact method to convert it into a finite‐dimensional Hamiltonian system. Next, a second‐order averaged vector field (AVF) method is employed in time which results in an energy‐preserving scheme. Some theoretical results such as convergence are investigated. In addition, it provides some numerical examples to illustrate the robustness and reliability of the theoretical results. It also explores the role of the parameters in the model and initial condition on the wave propagation.  相似文献   

19.
We study the defocusing nonlinear Schrödinger (NLS) equation written in hydrodynamic form through the Madelung transform. From the mathematical point of view, the hydrodynamic form can be seen as the Euler–Lagrange equations for a Lagrangian submitted to a differential constraint corresponding to the mass conservation law. The dispersive nature of the NLS equation poses some major numerical challenges. The idea is to introduce a two‐parameter family of extended Lagrangians, depending on a greater number of variables, whose Euler–Lagrange equations are hyperbolic and accurately approximate NLS equation in a certain limit. The corresponding hyperbolic equations are studied and solved numerically using Godunov‐type methods. Comparison of exact and asymptotic solutions to the one‐dimensional cubic NLS equation (“gray” solitons and dispersive shocks) and the corresponding numerical solutions to the extended system was performed. A very good accuracy of such a hyperbolic approximation was observed.  相似文献   

20.
In this paper, we study the following generalized quasilinear Schrödinger equation where N≥3, is a C1 even function, g(0) = 1 and g(s) > 0 for all s > 0. Under some suitable conditions, we prove that the equation has a ground state solution and infinitely many pairs ±u of geometrically distinct solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号