首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with SPDEs driven by Poisson random measures in Banach spaces and its numerical approximation. We investigate the accuracy of space and time approximation. As the space approximation we consider spectral methods and as time approximation the implicit Euler scheme and the explicit Euler scheme. AMS subject classification (2000) 60H15, 35R30  相似文献   

2.
3.
In this note, nonlinear stochastic partial differential equations (SPDEs) with continuous coefficients are studied. Via the solutions of backward doubly stochastic differential equations (BDSDEs) with continuous coefficients, we provide an existence result of stochastic viscosity sub- and super-solutions to this class of SPDEs. Under some stronger conditions, we prove the existence of stochastic viscosity solutions.  相似文献   

4.
5.
In this paper, we consider the non‐Lipschitz stochastic differential equations and stochastic functional differential equations with delays driven by Lévy noise, and the approximation theorems for the solutions to these two kinds of equations will be proposed respectively. Non‐Lipschitz condition is much weaker condition than the Lipschitz one. The simplified equations will be defined to make its solutions converge to that of the corresponding original equations both in the sense of mean square and probability, which constitute the approximation theorems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We consider the parabolic SPDE
with the Neuman boundary condition
and some initial condition.We use the Malliavin calculus in order to prove that, if the coefficients and are smooth and > 0, then the law of any vector (X(t,x1),..., X(t,xd)), 0 x1 ... xd 1, has a smooth, strictly positive density with respect to Lebesgue measure.  相似文献   

7.
The paper studies the well-posedness and optimal error estimates of spectral finite element approximations for the boundary value problems of semi-linear elliptic SPDEs driven by white or colored Gaussian noises. The noise term is approximated through the spectral projection of the covariance operator, which is not required to be commutative with the Laplacian operator.Through the convergence analysis of SPDEs with the noise terms replaced by the projected noises, the well-posedness of the SPDE is established under certain covariance operator-dependent conditions. These SPDEs with projected noises are then numerically approximated with the finite element method. A general error estimate framework is established for the finite element approximations. Based on this framework, optimal error estimates of finite element approximations for elliptic SPDEs driven by power-law noises are obtained. It is shown that with the proposed approach, convergence order of white noise driven SPDEs is improved by half for one-dimensional problems, and by an infinitesimal factor for higher-dimensional problems.  相似文献   

8.
A numerical scheme for stochastic PDEs with Gevrey regularity   总被引:1,自引:0,他引:1  
We consider strong approximations to parabolic stochastic PDEs.We assume the noise lies in a Gevrey space of analytic functions.This type of stochastic forcing includes the case of forcingin a finite number of Fourier modes. We show that with Gevreynoise our numerical scheme has solutions in a discrete equivalentof this space and prove a strong error estimate. Finally wepresent some numerical results for a stochastic PDE with a Ginzburg–Landaunonlinearity and compare this to the more standard implicitEuler–Maruyama scheme.  相似文献   

9.
This work investigates strong convergence of numerical schemes for nonlinear multiplicative noise driving stochastic partial differential equations under some weaker conditions imposed on the coefficients avoiding the commonly used global Lipschitz assumption in the literature. Space-time fully discrete scheme is proposed, which is performed by the finite element method in space and the implicit Euler method in time. Based on some technical lemmas including regularity properties for the exact solution of the considered problem, strong convergence analysis with sharp convergence rates for the proposed fully discrete scheme is rigorously established.  相似文献   

10.
In this work, we use the spectral Galerkin method to prove the existence of a pathwise unique mild solution of a fractional stochastic partial differential equation of Burgers type in a Hölder space. We get the temporal regularity, and using a combination of Galerkin and exponential‐Euler methods, we obtain a full discretization scheme of the solution. Moreover, we calculate the rates of convergence for both approximations (Galerkin and full discretization) with respect to time and to space.  相似文献   

11.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

12.
Weak convergence with respect to a space of twice continuously differentiable test functions is established for a discretisation of a heat equation with homogeneous Dirichlet boundary conditions in one dimension, forced by a space-time Brownian motion. The discretisation is based on finite differences in space and time, incorporating a spectral approximation in space to the Brownian motion.  相似文献   

13.
In this paper, we extend Walsh’s stochastic integral with respect to a Gaussian noise, white in time and with some homogeneous spatial correlation, in order to be able to integrate some random measure-valued processes. This extension turns out to be equivalent to Dalang’s one. Then we study existence and regularity of the density of the probability law for the real-valued mild solution to a general second order stochastic partial differential equation driven by such a noise. For this, we apply the techniques of the Malliavin calculus. Our results apply to the case of the stochastic heat equation in any space dimension and the stochastic wave equation in space dimension d=1,2,3. Moreover, for these particular examples, known results in the literature have been improved.   相似文献   

14.
It is well known that the weak Euler approximation of a stochastic differential equation has order one, provided the coefficients of the equation are sufficiently smooth. We prove that the order of the approximation is still one in the case where the drift coefficient is a Lipschitz function and the diffusion coefficient is constant.  相似文献   

15.
Under some non-degeneracy condition, the strong Feller property and irreducibility are studied for non-linear stochastic partial differential equations driven by multiplicative noise within the framework called ‘variational approach’. Our result for irreducibility can be applied to equations with locally monotone coefficients. In some special cases, we discuss the Hölder continuity of the associated Markov semigroups. The main results are applied to several examples such as stochastic Burgers equation, stochastic porous media equation and stochastic fast diffusion equation.  相似文献   

16.
A numerical treatment for the Dirichlet boundary value problem on regular triangular grids for homogeneous Helmholtz equations is presented, which also applies to the convection-diffusion problems. The main characteristic of the method is that an accuracy estimate is provided in analytical form with a better evaluation than that obtained with the usual finite difference method. Besides, this classical method can be seen as a truncated series approximation to the proposed method. The method is developed from the analytical solutions for the Dirichlet problem on a ball together with an error evaluation of an integral on the corresponding circle, yielding accuracy. Some numerical examples are discussed and the results are compared with other methods, with a consistent advantage to the solution obtained here.

  相似文献   


17.
** Email: todor{at}math.ethz.ch*** Corresponding author. Email: schwab{at}math.ethz.ch A scalar, elliptic boundary-value problem in divergence formwith stochastic diffusion coefficient a(x, ) in a bounded domainD d is reformulated as a deterministic, infinite-dimensional,parametric problem by separation of deterministic (x D) andstochastic ( ) variables in a(x, ) via Karhúnen–Loèveor Legendre expansions of the diffusion coefficient. Deterministic,approximate solvers are obtained by projection of this probleminto a product probability space of finite dimension M and sparsediscretizations of the resulting M-dimensional parametric problem.Both Galerkin and collocation approximations are considered.Under regularity assumptions on the fluctuation of a(x, ) inthe deterministic variable x, the convergence rate of the deterministicsolution algorithm is analysed in terms of the number N of deterministicproblems to be solved as both the chaos dimension M and themultiresolution level of the sparse discretization resp. thepolynomial degree of the chaos expansion increase simultaneously.  相似文献   

18.
It is known that a unique strong solution exists for multivalued stochastic differential equations under the Lipschitz continuity and linear growth conditions. In this paper we apply the Euler-Peano scheme to show that existence of weak solution and pathwise uniqueness still hold when the coefficients are random and satisfy one-sided locally Lipschitz continuous and an integral condition (i.e. Krylov's conditions put forward in On Kolmogorov's equations for finite-dimensional diffusions, Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998), Lecture Notes in Math., 1715, Springer, Berlin, 1999, pp. 1–63). When the coefficients are nonrandom and possibly discontinuous but only satisfy some integral conditions, the sequence of solutions of the Euler-Peano scheme converges weakly, and the limit is a weak solution of the corresponding MSDE. As a particular case, we obtain a global semi-flow for stochastic differential equations reflected in closed, convex domains.  相似文献   

19.
In this article we develop an existence and uniqueness theory of variational solutions for a class of nonautonomous stochastic partial differential equations of parabolic type defined on a bounded open subset DRd and driven by an infinite-dimensional multiplicative fractional noise. We introduce two notions of such solutions for them and prove their existence and their indistinguishability by assuming that the noise is derived from an L2(D)-valued fractional Wiener process WH with Hurst parameter , whose covariance operator satisfies appropriate integrability conditions, and where γ∈(0,1] denotes the Hölder exponent of the derivative of the nonlinearity in the stochastic term of the equations. We also prove the uniqueness of solutions when the stochastic term is an affine function of the unknown random field. Our existence and uniqueness proofs rest upon the construction and the convergence of a suitable sequence of Faedo-Galerkin approximations, while our proof of indistinguishability is based on certain density arguments as well as on new continuity properties of the stochastic integral we define with respect to WH.  相似文献   

20.
In this paper we study the existence of stationary solutions for stochastic partial differential equations. We establish a new connection between valued solutions of backward doubly stochastic differential equations (BDSDEs) on infinite horizon and the stationary solutions of the SPDEs. Moreover, we prove the existence and uniqueness of the solutions of BDSDEs on both finite and infinite horizons, so obtain the solutions of initial value problems and the stationary solutions (independent of any initial value) of SPDEs. The connection of the weak solutions of SPDEs and BDSDEs has independent interests in the areas of both SPDEs and BSDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号