首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the 2D Navier‐Stokes‐Voight equations with 3 delays in is considered. By using the Faedo‐Galerkin method, Lions‐Aubin lemma, and Arzelà‐Ascoli theorem, we establish the global well‐posedness of solutions and the existence of pullback attractors in H1.  相似文献   

2.
This paper studies the Cauchy problem of the 3D Navier–Stokes equations with nonlinear damping term | u | β?1u (β ≥ 1). For β ≥ 3, we derive a decay rate of the L2‐norm of the solutions. Then, the large time behavior is given by comparing the equation with the classic 3D Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We study the 3‐D compressible Navier–Stokes equations with an external potential force and a general pressure. We prove the global‐in‐time existence of weak solutions with small‐energy initial data and with densities being positive and essentially bounded. No smallness assumption is made on the external force. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

5.
This paper is concerned with the pullback dynamics of 2D non-autonomous Navier-Stokes-Voigt equations with continuous and distributed delays on bounded domain. Under some regular assumptions on initial and delay data, the existence of evolutionary process and the family of pullback attractors for this fluid flow model with Klein-Voight damping are derived. The regular assumption of external force is less than [1].  相似文献   

6.
We establish the moment estimates for a class of global weak solutions to the Navier–Stokes equations in the half‐space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we find sufficient conditions, involving only the pressure, that ensure the regularity of weak solutions to the Navier–Stokes equations. Conditions involving only the pressure were previously obtained in [7,4]. Following a remark in this last reference we improve, in particular, Kaniel's result [7]. Our condition can be seen at the light of the heuristic idea that the pressure behaves similarly to the modulus squared of the velocity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this study the 2D Navier–Stokes equations are used to obtain a new self-similar equation. The latter equation, subject to appropriate boundary conditions and volume discharge, describes the pressure distribution and velocity field of a plane free jet.  相似文献   

9.
We show that the Lp spatial–temporal decay rates of solutions of incompressible flow in an 2D exterior domain. When a domain has a boundary, pressure term makes an obstacle since we do not have enough information on the pressure term near the boundary. To overcome the difficulty, we adopt the ideas in He, Xin [C. He, Z. Xin, Weighted estimates for nonstationary Navier–Stokes equations in exterior domain, Methods Appl. Anal. 7 (3) (2000) 443–458], and our previous results [H.-O. Bae, B.J. Jin, Asymptotic behavior of Stokes solutions in 2D exterior domains, J. Math. Fluid Mech., in press; H.-O. Bae, B.J. Jin, Temporal and spatial decay rates of Navier–Stokes solutions in exterior domains, submitted for publication]. For the spatial decay rate estimate, we first extend temporal decay rate result of the Navier–Stokes solutions for general Lp space when the initial velocity is in , 1<rq<∞ (1<r<q=∞).  相似文献   

10.
We assume that Ωt is a domain in ?3, arbitrarily (but continuously) varying for 0?t?T. We impose no conditions on smoothness or shape of Ωt. We prove the global in time existence of a weak solution of the Navier–Stokes equation with Dirichlet's homogeneous or inhomogeneous boundary condition in Q[0, T) := {( x , t);0?t?T, x ∈Ωt}. The solution satisfies the energy‐type inequality and is weakly continuous in dependence of time in a certain sense. As particular examples, we consider flows around rotating bodies and around a body striking a rigid wall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we improved the regularity criterion on the Cauchy problem for the Navier–Stokes equations in multiplier space in terms of the two partial derivatives of velocity fields, ?1u1 and ?2u2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We prove the existence of a weak solution to Navier–Stokes equations describing the isentropic flow of a gas in a convex and bounded region, ΩR2, with nonhomogeneous Dirichlet boundary conditions on ∂Ω. These results are also extended to flow domain surrounding an obstacle.  相似文献   

13.
The global existence of weak solutions to the compressible Navier–Stokes equations with vacuum attracts many research interests nowadays. For the isentropic gas, the viscosity coefficient depends on density function from physical point of view. When the density function connects to vacuum continuously, the vacuum degeneracy gives some analytic difficulties in proving global existence. In this paper, we consider this case with gravitational force and fixed boundary condition. By giving a series of a priori estimates on the solution coping with the degeneracy of vacuum, gravitational force and boundary effect, we give global existence and uniqueness results similar to the case without force and boundary. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The three‐dimensional incompressible Navier–Stokes equations with the hyperdissipation always possess global smooth solutions when . Tao [6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a different type of reduction in the dissipation and proves the global existence and uniqueness in the H1‐functional setting.  相似文献   

15.
This paper studies the existence of weak solutions of the Navier–Stokes system defined on a certain class of domains in ?3 that may contain cusps. The concept of such a domain and weak energy solution for the system is defined and its existence is proved. However, thinness of cusps must be related to the adiabatic constant appearing in the pressure law. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The conforming spectral element methods are applied to solve the linearized Navier–Stokes equations by the help of stabilization techniques like those applied for finite elements. The stability and convergence analysis is carried out and essential numerical results are presented demonstrating the high accuracy of the method as well as its robustness. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 115–141, 1998  相似文献   

17.
In this paper, we establish exact solutions of the Cauchy problem for the 3D cylindrically symmetric incompressible Navier–Stokes equations and further study the global existence and asymptotic behavior of solutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
We study the local stabilization of the three-dimensional Navier–Stokes equations around an unstable stationary solution w, by means of a feedback boundary control. We first determine a feedback law for the linearized system around w. Next, we show that this feedback provides a local stabilization of the Navier–Stokes equations. To deal with the nonlinear term, the solutions to the closed loop system must be in H3/2+ε,3/4+ε/2(Q), with 0<ε. In [V. Barbu, I. Lasiecka, R. Triggiani, Boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc. 852 (2006); V. Barbu, I. Lasiecka, R. Triggiani, Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal. 64 (2006) 2704–2746], such a regularity is achieved with a feedback obtained by minimizing a functional involving a norm of the state variable strong enough. In that case, the feedback controller cannot be determined by a well posed Riccati equation. Here, we choose a functional involving a very weak norm of the state variable. The compatibility condition between the initial state and the feedback controller at t=0, is achieved by choosing a time varying control operator in a neighbourhood of t=0.  相似文献   

19.
In this paper we derive a decay rate of the L2‐norm of the solution to the 3‐D Navier–Stokes equations. Although the result which is proved by Fourier splitting method is well known, our method is new, concise and direct. Moreover, it turns out that the new method established here has a wide application on other equations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the stability of the rarefaction wave for Navier–Stokes equations in the half‐line without any smallness condition. When the boundary value is given for velocity ux = 0 = u? and the initial data have the state (v+, u+) at x→ + ∞, if u?<u+, it is excepted that there exists a solution of Navier–Stokes equations in the half‐line, which behaves as a 2‐rarefaction wave as t→ + ∞. Matsumura–Nishihara have proved it for barotropic viscous flow (Quart. Appl. Math. 2000; 58:69–83). Here, we generalize it to the isentropic flow with more general pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号