首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

2.
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017  相似文献   

3.
The paper deals with the time‐dependent linear heat equation with a non‐linear and non‐local boundary condition that arises when considering the radiation balance. Solutions are considered to be functions with values in V := {vH1(Ω)∣γvL5(∂Ω)}. As a consequence one has to work with non‐standard Sobolev spaces. The existence of solutions was proved by using a Galerkin‐based approximation scheme. Because of the non‐Hilbert character of the space V and the non‐local character of the boundary conditions, convergence of the Galerkin approximations is difficult to prove. The advantage of this approach is that we don't have to make assumptions about sub‐ and supersolutions. Finally, continuity of the solutions with respect to time is analysed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
This article deals with a boundary value problem for Laplace equation with a non‐linear and non‐local boundary condition. This problem comes from petroleum engineering and is used to obtain an estimation of well productivity. The non‐linear and non‐local boundary condition is written on the well boundary. On the outer reservoir boundaries, we have both Dirichlet and Neumann conditions. In this paper, we prove the existence and uniqueness of a solution to this problem. The existence is proved by Schauder theorem and the uniqueness is obtained under more restricted conditions, when the involved operator is a contraction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

6.
A Laguerre–Galerkin method is proposed and analysed for the Stokes' first problem of a Newtonian fluid in a non‐Darcian porous half‐space on a semi‐infinite interval. It is well known that Stokes' first problem has a jump discontinuity on boundary which is the main obstacle in numerical methods. By reformulating this equation with suitable functional transforms, it is shown that the Laguerre–Galerkin approximations are convergent on a semi‐infinite interval with spectral accuracy. An efficient and accurate algorithm based on the Laguerre–Galerkin approximations of the transformed equations is developed and implemented. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider the Petrov–Galerkin spectral method for fourth‐order elliptic problems on rectangular domains subject to non‐homogeneous Dirichlet boundary conditions. We derive some sharp results on the orthogonal approximations in one and two dimensions, which play important roles in numerical solutions of higher‐order problems. By applying these results to a fourth‐order problem, we establish the H2‐error and L2‐error bounds of the Petrov–Galerkin spectral method. Numerical experiments are provided to illustrate the high accuracy of the proposed method and coincide well with the theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The quenching problem is examined for a one‐dimensional heat equation with a non‐linear boundary condition that is of either local or non‐local type. Sufficient conditions are derived that establish both quenching and non‐quenching behaviour. The growth rate of the solution near quenching is also given for a power‐law non‐linearity. The analysis is conducted in the context of a nonlinear Volterra integral equation that is equivalent to the initial–boundary value problem. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we investigate a boundary problem with non‐local conditions for mixed parabolic–hyperbolic‐type equation with three lines of type changing with Caputo fractional derivative in the parabolic part. We equivalently reduce considered problem to the system of second kind Volterra integral equations. In the parabolic part, we use solution of the first boundary problem with appropriate Green's function, and in hyperbolic parts, we use corresponding solutions of the Cauchy problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We prove existence and uniqueness of strong solutions to a quasilinear parabolic‐elliptic system modelling an ionic exchanger. This chemical system consists of three phases connected with nonlinear boundary conditions. The most interesting difficulty of our problem manifests in the nonlinear transmission condition, as almost all quantities are non‐linearly involved in this boundary equation. Our approach is based on the contraction mapping principle, where maximal Lp‐regularity of the associated linear problem is used to obtain a fixed point equation of the starting problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we study the equation under non‐linear boundary conditions which model the vibrations of a beam clamped at x=0 and supported by a non‐linear bearing at x=L. By adding only one damping mechanism at x=L, we prove the existence of a global solution and exponential decay of the energy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
We consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. In our previous paper (Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169), we have derived the asymptotic approximations for the eigenvalues and eigenfunctions of the aforementioned non‐selfadjoint operators when the boundary parameters were arbitrary complex numbers except for one specific value of one of the parameters. We call this value the critical value of the boundary parameter. It has been shown (in Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169) that the entire set of the eigenvalues is located in a strip parallel to the real axis. The latter property is crucial for the proof of the fact that the set of the root vectors of the operator forms a Riesz basis in the state space of the system. In the present paper, we derive the asymptotics of the spectrum exactly in the case of the critical value of the boundary parameter. We show that in this case, the asymptotics of the eigenvalues is totally different, i.e. both the imaginary and real parts of eigenvalues tend to ∞as the number of an eigenvalue increases. We will show in our next paper, that as an indirect consequence of such a behaviour of the eigenvalues, the set of the root vectors of the corresponding operator is not uniformly minimal (let alone the Riesz basis property). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy) , in a rectangular region Ω with classical boundary conditions on the boundary of Ω . Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1 , and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.  相似文献   

14.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

15.
In this paper we consider the non‐linear wave equation a,b>0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions on α,β,m,p and for negative initial energy, a global non‐existence theorem. This improves a result by Yang (Math. Meth. Appl. Sci. 2002; 25 :825–833), who requires that the initial energy be sufficiently negative and relates the global non‐existence of solutions to the size of Ω. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study the following semilinear integro‐differential equation of the parabolic type that arise in the theory of nuclear reactor kinetics: under homogeneous Dirichlet boundary condition, where p, q⩾1. We first establish the local solvability of a large class of semilinear non‐local equations including the above equation. Next, we give the finite time blow‐up result by some modification of Kaplan's method and also the existence of global solutions by the comparison method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
We study a semilinear parabolic partial differential equation of second order in a bounded domain Ω ? ?N, with nonstandard boundary conditions (BCs) on a part Γnon of the boundary ?Ω. Here, neither the solution nor the flux are prescribed pointwise. Instead, the total flux through Γnon is given, and the solution along Γnon has to follow a prescribed shape function, apart from an additive (unknown) space‐constant α(t). We prove the well‐posedness of the problem, provide a numerical method for the recovery of the unknown boundary data, and establish the error estimates. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 167–191, 2003  相似文献   

18.
In this article, we propose and analyze a new mixed variational formulation for the stationary Boussinesq problem. Our method, which uses a technique previously applied to the Navier–Stokes equations, is based first on the introduction of a modified pseudostress tensor depending nonlinearly on the velocity through the respective convective term. Next, the pressure is eliminated, and an augmented approach for the fluid flow, which incorporates Galerkin‐type terms arising from the constitutive and equilibrium equations, and from the Dirichlet boundary condition, is coupled with a primal‐mixed scheme for the main equation modeling the temperature. In this way, the only unknowns of the resulting formulation are given by the aforementioned nonlinear pseudostress, the velocity, the temperature, and the normal derivative of the latter on the boundary. An equivalent fixed‐point setting is then introduced and the corresponding classical Banach Theorem, combined with the Lax–Milgram Theorem and the Babu?ka–Brezzi theory, are applied to prove the unique solvability of the continuous problem. In turn, the Brouwer and the Banach fixed‐point theorems are used to establish existence and uniqueness of solution, respectively, of the associated Galerkin scheme. In particular, Raviart–Thomas spaces of order k for the pseudostress, continuous piecewise polynomials of degree ≤ k+1 for the velocity and the temperature, and piecewise polynomials of degree ≤ k for the boundary unknown become feasible choices. Finally, we derive optimal a priori error estimates, and provide several numerical results illustrating the good performance of the augmented mixed‐primal finite element method and confirming the theoretical rates of convergence. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 445–478, 2016  相似文献   

19.
Problems for parabolic partial differential equations with nonlocal boundary conditions have been studied in many articles, but boundary value problems for hyperbolic partial differential equations have so far remained nearly uninvestigated. In this article a numerical technique is presented for the solution of a nonclassical problem for the one‐dimensional wave equation. This method uses the cubic B‐spline scaling functions. Some numerical results are reported to support our study. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
We consider the third‐order Claerbout‐type wide‐angle parabolic equation (PE) of underwater acoustics in a cylindrically symmetric medium consisting of water over a soft bottom B of range‐dependent topography. There is strong indication that the initial‐boundary value problem for this equation with just a homogeneous Dirichlet boundary condition posed on B may not be well‐posed, for example when B is downsloping. We impose, in addition to the above, another homogeneous, second‐order boundary condition, derived by assuming that the standard (narrow‐angle) PE holds on B, and establish a priori H2 estimates for the solution of the resulting initial‐boundary value problem for any bottom topography. After a change of the depth variable that makes B horizontal, we discretize the transformed problem by a second‐order accurate finite difference scheme and show, in the case of upsloping and downsloping wedge‐type domains, that the new model gives stable and accurate results. We also present an alternative set of boundary conditions that make the problem exactly energy conserving; one of these conditions may be viewed as a generalization of the Abrahamsson–Kreiss boundary condition in the wide‐angle case. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号