首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the local exact controllability of the steady state solutions of the magnetohydrodynamic equations. The main result of the paper asserts that the steady state solutions of these equations are locally controllable if they are smooth enough. We reduce the local exact controllability of the steady state solutions of the magnetohydrodynamic equations to the global exact controllability of the null solution of the linearized magnetohydrodynamic system via a fixed‐point argument. The treatment of the reduced problem relies on two Carleman‐type inequalities for the backward adjoint system. © 2003 Wiley Periodicals, Inc.  相似文献   

2.
We introduce a time semi-discretization of a damped wave equation by a SAV scheme with second order accuracy. The energy dissipation law is shown to hold without any restriction on the time step. We prove that any sequence generated by the scheme converges to a steady state (up to a subsequence). We notice that the steady state equation associated to the SAV scheme is a modified version of the steady state equation associated to the damped wave equation. We show that a similar result holds for a SAV fully discrete version of the Cahn-Hilliard equation and we compare numerically the two steady state equations.  相似文献   

3.
In this paper, we study the applications of the monotone iteration method for investigating the existence and stability of solutions to nonlocal reaction-diffusion equations with time delay. We emphasize the importance of the idea of monotone iteration schemes for investigating the stability of solutions to such equations. We show that every steady state of such equations obtained by using the monotone iteration method is priori stable and all stable steady states can be obtained by using such method. Finally, we apply our main results to three population models.  相似文献   

4.
In this paper we analyze the convergence to steady state of solutions of the compressible and the incompressible isentropic Euler equations in two space dimensions. In the compressible case, the original equations do not converge. We replace the equation of continuity with an elliptic equation for the density, obtaining a new set of equations, which have the same steady solution. In the incompressible case, the equation of continuity is replaced by a Poisson equation for the pressure. In both cases, we linearize the equations around a steady solution and show that the unsteady solution of the linearized equations converges to the steady solution, if the steady solution is sufficiently smooth. In the proof we consider how the energy of the time dependent part developes with time, and find that it decrease exponentially.  相似文献   

5.
In this paper, we address some fundamental issues concerning “time marching” numerical schemes for computing steady state solutions of boundary value problems for nonlinear partial differential equations. Simple examples are used to illustrate that even theoretically convergent schemes can produce numerical steady state solutions that do not correspond to steady state solutions of the boundary value problem. This phenomenon must be considered in any computational study of nonunique solutions to partial differential equations that govern physical systems such as fluid flows. In particular, numerical calculations have been used to “suggest” that certain Euler equations do not have a unique solution. For Burgers' equation on a finite spatial interval with Neumann boundary conditions the only steady state solutions are constant (in space) functions. Moreover, according to recent theoretical results, for any initial condition the corresponding solution to Burgers' equation must converge to a constant as t → ∞. However, we present a convergent finite difference scheme that produces false nonconstant numerical steady state “solutions.” These erroneous solutions arise out of the necessary finite floating point arithmetic inherent in every digital computer. We suggest the resulting numerical steady state solution may be viewed as a solution to a “nearby” boundary value problem with high sensitivity to changes in the boundary conditions. Finally, we close with some comments on the relevance of this paper to some recent “numerical based proofs” of the existence of nonunique solutions to Euler equations and to aerodynamic design.  相似文献   

6.
Ordinary differential equations are used frequently by theoreticians to model kinetic process in chemistry and biology. These systems can have stable and unstable steady states and oscillations. This paper presents an algorithm to find all steady state solutions to a restricted class of ODE models, for which the right-hand sides are linear combinations of rational functions of variables and parameters. The algorithm converts the steady state equations into a system of polynomial equations and uses a globally convergent homotopy method to find all the roots of the system of polynomials. All steady state solutions of the original ODEs are guaranteed to be present as roots of the polynomial equations. The conversion may generate some spurious roots that do not correspond to steady state solutions. The stability properties of the steady states are not revealed. This paper explains the algorithms used and gives results for a cell cycle modeling problem.  相似文献   

7.
In this paper, we introduce a method to conclude about the existence of secondary bifurcations or isolas of steady state solutions for parameter dependent nonlinear partial differential equations. The technique combines the Global Bifurcation Theorem, knowledge about the non-existence of nontrivial steady state solutions at the zero parameter value and explicit information about the coexistence of multiple nontrivial steady states at a positive parameter value. We apply the method to the two-dimensional Swift-Hohenberg equation.  相似文献   

8.
具热效应的半导体方程组的初边值问题   总被引:4,自引:0,他引:4  
证明了热了流模型半导体方程组整体光滑解的存在唯一性。如果区域在某一方向充分窄,则我们证明了平衡解的存在唯一性和解的渐近性。  相似文献   

9.
We consider a nonlinear age-structured model, inspired by hematopoiesis modelling, describing the dynamics of a cell population divided into mature and immature cells. Immature cells, that can be either proliferating or non-proliferating, differentiate in mature cells, that in turn control the immature cell population through a negative feedback. We reduce the system to two delay differential equations, and we investigate the asymptotic stability of the trivial and the positive steady states. By constructing a Lyapunov function, the trivial steady state is proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic stability of the positive steady state is related to a delay-dependent characteristic equation. Existence of a Hopf bifurcation and stability switch for the positive steady state is established. Numerical simulations illustrate the stability results.  相似文献   

10.
Asymptotic behaviour of solutions to the nonlinear variational equations of the two basic types of cable stayed bridges is studied. The equations describe vertical and torsional oscillations of the center span, which is the part of road bed between pylons. Due to damping, amplitude and velocity of oscillations remain bounded if wind force is bounded as well. Moreover, the solution to the nonlinear equations converges to the solution of the steady state problem if wind drops. If the center span has certain aerodynamical properties and the initial state is near to the solution of the steady state problem, then the solution converges to the steady state solution even if the forces representing wind do not vanish.  相似文献   

11.
We consider an initial boundary value problem for nonhomogeneous Navier‐Stokes equations with a uniform gravitational field. For any given steady density profile whose derivatives are sufficiently close to a negative constant, we show that there exists a unique global solution if the initial perturbation with respect to the steady state is sufficiently small.  相似文献   

12.
We identify the leading term describing the behavior at large distances of the steady state solutions of the Navier-Stokes equations in 3D exterior domains with vanishing velocity at the spatial infinity.  相似文献   

13.
The multigrid waveform relaxation (WR) algorithm has been fairly studied and implemented for parabolic equations. It has been found that the performance of the multigrid WR method for a parabolic equation is practically the same as that of multigrid iteration for the associated steady state elliptic equation. However, the properties of the multigrid WR method for hyperbolic problems are relatively unknown. This paper studies the multigrid acceleration to the WR iteration for hyperbolic problems, with a focus on the convergence comparison between the multigrid WR iteration and the multigrid iteration for the corresponding steady state equations. Using a Fourier-Laplace analysis in two case studies, it is found that the multigrid performance on hyperbolic problems no longer shares the close resemblance in convergence factors between the WR iteration for parabolic equations and the iteration for the associated steady state equations.  相似文献   

14.
We formulate a class of N player difference games and derive open—loop and Markov equilibria. It turns out that both types of equilibria can be characterized by a set of difference equations that describe the equilibrium dynamics. We analyze the stability properties of the difference equations that correspond to an equilibrium and find that in both the open—loop and the Markov game there is convergence towards a steady state equilibrium  相似文献   

15.
The aim of this paper is to present a kinetic formulation of a model for the coupling of transient free surface and pressurised flows. Firstly, we revisit the system of Saint-Venant equations for free surface flow: we state some properties of Saint-Venant equations, we propose a kinetic formulation and we verify that this kinetic formulation leads to a Gibbs equilibrium that minimises (in some general case) an energy and preserves the still water steady state. Secondly, we propose a model for pressurised flows in a Saint-Venant-like conservative formulation. We then propose a kinetic formulation and we verify that this kinetic formulation leads to a Gibbs equilibrium that minimises in any case an energy and preserves the still water steady state. Finally, we propose a dual model that couples these two types of flow.  相似文献   

16.
A steady state potential flow model for semiconductors   总被引:5,自引:0,他引:5  
Summary We present a three-dimensional steady state irrotational flow model for semiconductors which is based on the hydrodynamic equations. We prove existence and local uniqueness of smooth solutions under a smallness assumptions on the data. This assumption implies subsonic flow of electrons in the semiconductors device.  相似文献   

17.
We analyze the long-time behavior of transport equations for a class of dissipative quantum systems with Fokker-planck type diffusion operator, subject to confining potentials of harmonic oscillator type. We establish the existence and uniqueness of a non-equilibrium steady state for the corresponding dynamics. Further, using a (classical) convex Sobolev inequality, we prove an optimal exponential rate of decay towards this state and additionally give precise dispersion estimates in those cases, where no stationary state exists.  相似文献   

18.
Mathematical model for the effects of protease inhibitor on the dynamics of HIV-1 infection model with three delays is proposed and analyzed. Some analytical results on the global stability of viral free steady state and infected steady state are obtained. The stability/instability of the positive steady state and associated Hopf bifurcation are investigated by analyzing the characteristic equations.  相似文献   

19.
We propose a simple numerical method for calculating both unsteady and steady state solution of hyperbolic system with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with topography,and the quasi one-dimensional nozzle flows. We use the interface value, rather than the cell-averages, for the source terms, which results in a well-balanced scheme that can capture the steady state solution with a remarkable accuracy. This method approximates the source terms via the numerical fluxes produced by an (approximate) Riemann solver for the homogeneous hyperbolic systems with slight additional computation complexity using Newton‘s iterations and numerical integrations. This method solves well the subor super-critical flows, and with a transonic fix, also handles well the transonic flows over the concentration. Numerical examples provide strong evidence on the effectiveness of this new method for both unsteady and steady state calculations.  相似文献   

20.
A matrix formulation of the differential equations describingcopolymer composition in n-monomer systems in steady state approximationenables properties to be derived from those of positive matrices.We discuss the role of reactivity ratios, existence of solutionsand the conditions for an azeotrope. Some computational aspectsof the solution of the non-linear equations for transient behaviourare examined. Illustrative applications to ternary systems aremade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号