首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reverse osmosis (RO) is a compact process that has potential for the removal of ionic and organic pollutants for recycling space mission wastewater. Seven candidate RO membranes were compared using a batch stirred cell to determine the membrane flux and the solute rejection for synthetic space mission wastewaters. Even though the urea molecule is larger than ions such as Na+, Cl-, and NH4+, the rejection of urea is lower. This indicates that the chemical interaction between solutes and the membrane is more important than the size exclusion effect. Low pressure reverse osmosis (LPRO) membranes appear to be most desirable because of their high permeate flux and rejection. Solute rejection is dependent on the shear rate, indicating the importance of concentration polarization. A simple transport model based on the solution-diffusion model incorporating concentration polarization is used to interpret the experimental results and predict rejection over a range of operating conditions. Grant numbers: NAG 9-1053.  相似文献   

2.
Nanofiltration (NF) membranes possess the intermediate molecular weight cut-off between reverse osmosis membranes and ultrafiltration membranes, and also have rejection to inorganic salts. So one can assume that NF membranes have charged pore structure. We have developed the electrostatic and steric-hindrance (ES) model from the steric-hindrance pore (SHP) model and the Teorell-Meyer-Sievers (TMS) model (Wang et al., J. Chem. Eng. Japan, 28 (1995) 372) to predict the transport performance of charged solutes through NF membranes based on their charged pore structure. In this article, by doing the permeation experiments of aqueous solutions of neutral solutes and sodium chloride, the structural parameters (the pore radius and the ratio of membrane porosity to membrane thickness) and the charge density of NF membranes (Desal-S, NF-40, NTR7450 and G-20) were estimated on the basis of SHP model and the TMS model, respectively. Then, we selected an aqueous solution of different tracer charged solutes (sodium benzenesulfonate, sodium naphthalenesulfonate and sodium tetraphenyl-borate) and a supporting salt (sodium chloride) to verify the ES model. The prediction based on the ES model was in good agreement with the experimental results.  相似文献   

3.
Nanofiltration studies of larger organic microsolutes in methanol solutions   总被引:3,自引:0,他引:3  
Multistep organic solvent-based pharmaceutical syntheses of larger organic microsolutes having molecular weights (MW) in the range of 300–1000 generally require athermal separation processes because the active molecules and the intermediates are thermally labile. To that end, nanofiltration (NF) of methanol solutions of three selected solutes, safranin O (MW 351), brilliant blue R (MW 826) and vitamin B12 (MW 1355) has been studied in a batch stirred cell for a dilute solution of each individual solute at 3034 kPa (440 psig). The solvent-resistant membranes investigated and their manufacturer-specified molecular weight cut-offs (MWCO) are MPF-44 (250), MPF-50 (700) and MPF-60 (400). During an initial transient period, the solvent flux decreased with time and the solute rejection increased with time for every membrane reaching a steady state after about 12 h. This behavior resulting from membrane compaction and pore size reduction was partially reversible. Additional studies using higher feed solute concentrations (1 and 3 wt.%) show considerable reduction in solvent flux and increase in solute rejection; the effect appears to be far more than that due to an increase in osmotic pressure and possible reasons for such a behavior have been suggested. The observed solute rejection values are generally significantly lower than the manufacturer-specified MWCO values. Additional studies varying the feed solution pressure through the membrane MPF-60 indicate that the variation of the percent rejection of solutes safranin O and brilliant blue R with the solvent flux tends to follow the relation suggested by the Finely Porous Model.  相似文献   

4.
Reverse osmosis (RO) rejection is strongly influenced by the distribution of solute between the membrane and solvent phases. For this reason, we examined the partition coefficients of inorganic compounds between water and cellulose acetate (CA) membranes. Cation and anion partition coefficients were determined by independent analyses. Effects of fixed (negative) membrane charges on CA are clearly apparent at low solute concentrations. The mean cation/anion partition coefficients decrease with the product of the cation and anion valence, and increase with increasing ionic size. Un-ionized inorganic compounds, HgC12 and HAuC14, are strongly sorbed by CA membranes. All of these observations are consistent with electrostatic theory.Experimental membrane/water partition coefficients are influenced by temperature, pH, and ion-pairing. CA membranes exhibit swelling and shrinkage when exposed to certain aqueous solutions. Swelling and shrinkage influence solute partition and diffusion coefficients, the water content of the membranes, and their RO rejection.The present results provide a comprehensive experimental basis for understanding the mechanism of RO rejection by CA membranes. Moreover, these results can be used to predict RO behavior under a wide variety of experimental conditions. The potential use of reverse osmosis in a variety of wastewater applications is considered in some detail.  相似文献   

5.
Einstein and others derived the reciprocal dependence of the self-diffusivity D on the solute radius r(u) for large solutes based on kinetic theory. We examine here (a) the range of r(u) over which Stokes-Einstein (SE) dependence is valid and (b) the precise dependence for small solutes outside of the SE regime. We show through molecular dynamics simulations that there are two distinct regimes for smaller solutes: (i) the interaction or Levitation effect (LE) regime for solutes of intermediate size and (ii) the D proportional, variant 1/r(u)(2) for still smaller solutes. We show that as the solute-solvent size ratio decreases, the breakdown in the Stokes-Einstein relationship leading to the LE regime has its origin in dispersion interaction between the solute and the solvent. These results explain reports of enhanced solute diffusion in solvents existing in the literature seen for small solutes for which no explanation exists.  相似文献   

6.
The authors developed a rigorous framework to model nanofiltration (NF) membrane selectivity at high feed water recoveries and verify it experimentally. The phenomenological model and the Donnan steric partitioning pore model (DSPM) were incorporated into a differential element approach for predicting removal of a variety of solutes from single salt solutions and natural water by NF membranes up to 90% feed water recovery in the temperature range 5-41 degrees C. In this approach, the entire membrane ensemble was divided into numerous sub-elements analogous to real-world full-scale NF installations, where concentrate (or reject) from one element feeds into the next element. Fundamental membrane properties (average pore radius, surface charge density, and ratio of thickness to porosity) and the reflection coefficient and permeability coefficient were first independently obtained for each solute-membrane-temperature combination using separate low recovery experiments with negligible concentration polarization and later used as model inputs to calculate solute removal in a purely predictive fashion for 5-90% recovery. This modeling approach accurately predicted removals from single salt solutions of NaCl and MgSO(4) as well as natural organic matter, disinfection by-product precursors, and several ions from pretreated Lake Houston water in a wide range of operating conditions demonstrating its use to simulate NF permeate water quality under real-world conditions of high feed water recovery.  相似文献   

7.
Two commercial nanofiltration (NF) membranes, viz., Desal-HL and NF 700 MWCO were investigated experimentally using neutral and charged solutes, viz., glucose, sodium chloride and magnesium chloride. Effect of pH was studied for sodium chloride rejection and isoelectric point of the membrane was deduced. Experimental results were analyzed using Donnan steric pore and dielectric exclusion models. Dielectric exclusion arises due to the difference in dielectric constant between the bulk and the nano-pore. Born dielectric effect was used as dielectric exclusion phenomena in the present investigation. Stokes–Einstein, Born effective and Pauling radii were used for theoretical simulation, which accurately predicted different charge densities. Empirical correlations were proposed between charge density, concentration and pH for each radius. Charge density decreased drastically when dielectric exclusion term was included in the theoretical model, which showed the real physical characteristics of the membranes employed. Charge density and radius of pore was found to be an important surface parameter in predicting the separation effects in NF membranes.  相似文献   

8.
Colloidal interactions and fouling of NF and RO membranes: a review   总被引:3,自引:0,他引:3  
Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter?100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper.  相似文献   

9.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

10.
Rejection of adsorbing solutes by ultrafiltration membranes is not adequately described by the steric rejection theory [3]. Solute adsorption (fouling) changes the shape of the rejection curve. Typically, the measured curves are steeper than the theoretical curve. The shape of the curve can be predicted qualitatively from simple theoretical considerations. For adsorbing solutes, single-solute and multiple-solute ultrafiltration experiments give different results. Relative thickness of adsorbed solute layer in a membrane pore was found to depend on (1) solute size, (2) solute hydrophobicity, (3) pH and ionic strength for a protein solute, (4) solute concentration, and (5) time of adsorption. Large differences observed between water fluxes and fluxes of very dilute polymer solutions through the same membrane are also interpreted in terms of solute adsorption.  相似文献   

11.
The effects of electrostatic interactions on the rejection of organic solutes with nanofiltration membranes were investigated. For two different membranes, the rejection of selected organic acids, positively and negatively charged pharmaceuticals and neutral pharmaceuticals was investigated at different feed water chemistries (different ionic strengths and pH conditions, with and without the presence of NOM and divalent cations). It was concluded that for negatively charged membranes, electrostatic repulsion leads to an increase of the rejection of negatively charged solutes and electrostatic attraction leads to a decrease of the rejection of positively charged solutes, compared to neutral solutes. Neutral and positively charged solutes engage in hydrophobic interactions with negatively charged membranes, whereas negatively charged solutes do not engage in hydrophobic interactions since they cannot approach the membrane surface. This provides proof for the theory of an increased concentration of positively charged organic solutes and a decreased concentration of negatively charged organic solutes at the membrane surface compared to the bulk fluid. This concept may be denoted as “charge concentration polarisation”. The concept was further used as a modelling tool to predict the effects of electrostatic interactions on the rejection of trace organic solutes.  相似文献   

12.
解读纳滤:一种具有纳米尺度效应的分子分离操作   总被引:1,自引:0,他引:1  
方彦彦  李倩  王晓琳 《化学进展》2012,24(5):863-870
纳滤膜是20世纪80年代末期发展起来的一种广泛用于液体分离的新型分离膜。早期研究中,先后提出的基于筛分效应的细孔模型,基于静电效应的电荷模型,以及同时考虑上述两种效应的静电位阻模型和道南位阻模型等为人们更好地理解纳滤膜分离机理和指导纳滤膜过程应用发挥了十分重要的作用。然而由于这些具有“疏松型反渗透膜”特点的纳滤膜没有相应的膜性能预测评价软件,使得针对具体应用过程的纳滤膜的大规模标准化应用受到了一定的制约。为此,结合上述模型,根据一些特定实验拟合确定混合盐体系同号离子间的竞争作用和异号离子间的调节作用,提出了一个适于混合盐体系的纳滤膜分离性能评价模型,促进了纳滤膜技术在水处理过程的大规模推广。最近,根据纳滤膜对离子选择性分离性能及其伴随的动电性质的细致而深入的实验研究,发现仅考虑筛分效应和静电效应并不能完全合理地解释纳滤膜的分离性能,且在动电性质的解析上也存在一定缺陷,进而对纳滤膜纳米级孔径引起的特殊效应和溶液体系中复杂相互作用引起的荷电性质变化有了更为深刻的认识和理解,提出并定量分析了离子透过纳滤膜时存在的介电排斥效应。  相似文献   

13.
Polyamide/polyacrylonitrile thin‐film‐composite (TFC) nanofiltration (NF) membranes for the separation of oleic acid dissolved in organic solvents (methanol and acetone) were interfacially prepared by the reaction of trimesoyl chloride in an organic phase with an aqueous phase containing piperazine and m‐phenylene diamine. The interfacial reaction was confirmed by an investigation of the attenuated total reflection infrared spectrum. The surface morphology of the polyamide TFC membranes was examined with scanning electron microscopy. The hydrophilic properties of the membrane surfaces were conjectured on the basis of the ζ potential and contact angle. The effects of the monomer concentrations of the monomer blends (aliphatic and aromatic diamines) and drying times on various aspects of membrane performance, such as the solvents (water, alcohols, ketones, and hexane), permeation rates, and organic solute [poly(ethylene glycol) 200 and oleic acid] rejection rates, were investigated. All the membranes showed good solvent resistance. The polar solvent flux for water and methanol was higher than that for a nonpolar solvent (hexane). The membranes gave good rejection rates of oleic acid dissolved in methanol and acetone. The NF membranes were compared with various commercial membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2151–2163, 2002  相似文献   

14.
通过对筛选的3种纳滤膜结构及对低聚壳聚糖、氨基葡萄糖和NaAc溶液的截留性能和纯化过程研究发现,3种纳滤膜的膜面粗糙度大小依次为:DL>DK>NTR-7450,均能对低聚壳聚糖100%截留,但只能部分截留氨基葡萄糖和NaAc,其截留率大小为:DK>DL>NTR-7450。从低聚壳聚糖的纯化工艺要求和抗污染能力方面考虑,NTR-7450纳滤膜更具有工业应用价值。此外,纳滤膜对溶质的分离效果主要由空间位阻和静电效应决定,综合作用结果导致了低聚壳聚糖体系中的各种主要阳离子在纳滤过程中存在竞争透过,截留次序依次为:高分子低聚壳聚糖>氨基葡萄糖>Na+>H+。在Donnan效应和电离平衡的影响下,体系中Ac-在纳滤过程中也被脱出。纳滤纯化低聚壳聚糖制备液在技术上可行。  相似文献   

15.
Two sulfonated polyvinylidene fluoride membranes of different porosity, prepared by the casting and gelation technique, were tested in an ultrafiltration laboratory-scale pilot plant with hydrosoluble polymer feed solutions. Polyethyleneglycols and dextrans of different average molecular weight were used as solutes for the feed solutions. Flux and rejection of the membranes were determined as functions of operating conditions (pressure, temperature and recirculation rate). The effect of properties of feed solutions (solute, concentration and molecular weight) on the performance of the membranes was also investigated.  相似文献   

16.
Hybrid organically bridged silica membranes have attracted considerable attention because of their high performances in a variety of applications. Development of robust reverse osmosis (RO) membranes to withstand aggressive operating conditions is still a major challenge. Here, a new type of microporous organosilica membrane has been developed and applied in reverse osmosis. Sol-gel derived organosilica RO membranes reject isopropanol with rejection higher than 95%, demonstrating superior molecular sieving ability for neutral solutes of low molecular weight. Due to the introduction of an inherently stable hybrid network structure, the membrane withstands higher temperatures in comparison with commercial polyamide RO membranes, and is resistant to water to at least 90 °C with no obvious changes in filtration performance. Furthermore, both an accelerated chlorine-resistance test and Fourier transform infrared analysis confirm excellent chlorine stability in this material, which demonstrates promise for a new generation of chlorine-resistant RO membrane materials.  相似文献   

17.
Nanofiltration (NF) is an attractive technique for reducing F- concentrations to acceptable levels in drinking water, but commercial NF membranes such as NF 270 and NF 90 show minimal Cl-/F- selectivity. In contrast, simple layer-by-layer deposition of 4.5-bilayer poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films on porous alumina supports yields NF membranes that exhibit Cl-/F- and Br-/F- selectivities>3 along with solution fluxes that are >3-fold higher than those of the commercial membranes. Fluoride rejection by (PSS/PDADMAC)4PSS membranes, which is >70%, is independent of pressure over a range of 3.6 to 6.0 bar, suggesting that the primary transport mechanism in these films is convection. Moreover, the fact that Br-/F- selectivity is 12% higher than Cl-/F- selectivity suggests that discrimination among the monovalent ions is based on size (Stokes radius). Chloride/fluoride selectivities are essentially constant over Cl-/F- feed ratios from 1 to 60, so these separations will be viable over a range of conditions. Interestingly, PSS/protonated poly(allylamine) films show little Cl-/F- selectivity, and the selectivity of PSS/PDADMAC membranes is a strong function of the number of deposited layers, indicating that NF properties are very sensitive to film structure.  相似文献   

18.
Wine aroma represents one of the main properties that determines the consumer acceptance of the wine. It is different for each wine variety and depends on a large number of various chemical compounds. The aim of this study was to prepare red wine concentrates with enriched aroma compounds and chemical composition. For that purpose, Cabernet Sauvignon red wine variety was concentrated by reverse osmosis (RO) and nanofiltration (NF) processes under different operating conditions. Different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and temperature regimes (with and without cooling) were applied on Alfa Laval LabUnit M20 equipped with six composite polyamide RO98pHt M20 or NF M20 membranes. Higher pressure increased the retention of sugars, SO2, total and volatile acids and ethanol, but the temperature increment had opposite effect. Both membranes were permeable for water, ethanol, acetic acid, 4-ethylphenol and 4-ethylguaiacol and their concentration decreased after wine filtration. RO98pHt membranes retained higher concentrations of total aroma compounds than NF membranes, but both processes, reverse osmosis and nanofiltration, resulted in retentates with different aroma profiles comparing to the initial wine. The retention of individual compounds depended on several factors (chemical structure, stability, polarity, applied processing parameters, etc.).  相似文献   

19.
In this study, asymmetric cellulose acetate membranes with moderate NaCl rejection (85.5%) were prepared and used to study the influence of the chemical nature of organic solutes in different organic solvents. The solute rejection and the solvent flux of linear hydrocarbons (Mw=226–563 g/mol) and linear carboxylic acids (Mw=228–340 g/mol) in ethanol and hexane were studied as a function of the molecular weight, the feed concentration and the transmembrane pressure.The ethanol flux was three times higher than the hexane flux. The rejection coefficients for both types of solute were quire acceptable (R=60–90%), when ethanol was the solvent. In hexane the linear hydrocarbons showed a rejection of 40–60%, while all carboxylic acids reached a negative rejection of −40 to −20%. This negative “observed” rejection can be attributed to accumulation of carboxylic acid at the membrane; the solute concentration at the membrane becomes much higher than in the bulk solution, due to a higher affinity of the solute with the membrane in hexane than in ethanol. Sorption experiments support this hypothesis.Furthermore, it was found that the rejection increases with increasing molecular weight and the rejection and flux are hardly affected by the feed concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号