共查询到17条相似文献,搜索用时 85 毫秒
1.
通过循环伏安(CV)、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和傅立叶变换红外(FTIR)光谱研究了双乙二酸硼酸锂(LiBOB)基电解液在石墨表面的成膜性及其在常温(25 ℃)和高温(70 ℃)下对石墨循环性能的影响. 结果表明, LiBOB基电解液的成膜电位在1.7 V, 其中BOB-离子还原形成的草酸盐是固体电解质相界面(SEI)膜的有效成分之一. 电化学阻抗谱显示, 膜阻抗在循环过程中呈现减小趋势, 这有利于提高循环稳定性. 在常温和高温条件下, 石墨在该电解液体系中均表现出优于其在LiPF6基电解液体系中的循环性能. 相似文献
2.
使用C80微量量热仪对不同充电状态下LixCoO2的热稳定性、LixCoO2与1.0molLLiPF6EC DEC(质量比=11)电解液的热稳定性进行了研究。结果表明,LixCoO2的放热量和主放热峰温度随x值减小而增加,Li0.05CoO2在271.8℃达到放热峰,总放热量高达1575.5Jg。LixCoO2与电解液反应时,LixCoO2首先分解出的氧气使电解液氧化,同时电解液也发生分解等反应,放热峰温度随x的增大呈增大趋势,放热量随x的增大呈减少的趋势。此外,LixCoO2与电解液反应产生大量的CO2、HF等气体。 相似文献
3.
4.
5.
以DSC方法研究分析了1M LiPF6 EC-DMC-EMC(1:1:1,质量比)电解液在锂离子电池中的热行为.锂离子电池中,电解液的热行为主要体现在三方面:电解液的热分解、参与充电态石墨负极的热分解反应、与Li0.5CoO2的热分解产物发生复杂的化学反应.电解液热分解反应是EMC分解生成DEC、DMC,而DEC、DMC与LiPF6的分解产物PF5发生系列的化学反应,释放大量热与气体.Li0.5CoO2分解释放的氧气导致电解液的分解产物及有机溶剂的燃烧,释放大量热与小分子气体.燃烧反应释放的大量热促使Li0.5CoO2的分解产物Co3O4的继续分解;当达到300℃以上时,由LI0.5CoO2分解生成的LiCoO2可能与燃烧产物CO2发生反应以及其他系列的化学反应.充电态的石墨电极的DSC结果表明,电极表面形成固体电解质膜(SEI膜)的碎裂反应是主要的放热反应,LiC6与粘结剂及电解液的放热反应相对较弱. 相似文献
6.
7.
基于1 mol ·dm-3 LiPF6/EC的传统非水型电解液已在锂离子电池中应用了20年。高功率、高比能锂离子电池以及锂金属电池(如Li-O2和Li-S)的发展,对电解液提出了更高的要求,使得电解液的研究与开发到了一个革新换代的阶段。研究者们已经在离子液体、聚合物电解质和无机固态电解质等新型体系研究方面取得一定的研究成果,但是这些新体系存在的本征问题使其商业化应用面临一定的困难。研究者们也开始重新审视已优化的常规液态电解液体系,高浓度锂盐电解液(>3 mol ·dm-3)再次引起广泛关注。本文综述了高浓度锂盐电解液的发展历程、溶液结构特征、分类标准及其特殊的物理化学性能、锂离子传输性质和电解液/电极相容性;对高浓度锂盐电解液存在的主要问题进行了简要分析,提出了相应的改进措施,展望了高浓度锂盐电解液未来的发展方向,为新型电解液的开发提供了一条新思路。 相似文献
8.
高安全高电压电解液的开发是锂离子电池电解液发展的重要方向。有机硅化合物由于具有独特的理化性能,使其成为锂离子电池电解液领域的研究热点之一。本文综述了有机硅电解液的研究进展,重点从功能分子设计的角度介绍含碳酸酯基、氨基甲酸酯基、腈基、离子液体、含氟类的有机硅功能电解液溶剂制备及电池性能表现;详细阐述具有结构多样性的有机硅化合物用作高电压添加剂、高安全添加剂、高/低温添加剂、储存/耐自放电添加剂、吸酸吸水添加剂及其在不同电池材料体系中的应用。最后,对有机硅电解液的研究趋势和应用前景进行了展望。 相似文献
9.
10.
锂离子电池有机电解液成膜添加剂研究进展 总被引:8,自引:0,他引:8
综述了锂离子电池有机电解液成膜添加剂的作用原理,从气体、液体、固体成膜添加剂三个方面综述了目前成膜添加剂的研究现状。重点论述了每一种添加剂的作用原理以及在碳负极上的还原机理,同时对它们的优缺点也作了适当的评述。 相似文献
11.
REN Yong-huan WU Bo-rong MU Dao-bin YANG Chun-wei ZHANG Cun-zhong WU Feng 《高等学校化学研究》2013,29(1):116-120
Mass triangle model was applied to lithium ion battery for electrolyte conductivity forecasting. Seven kinds of electrolytes with different proportions of 3 solvents were prepared. The solvent proportions of the seven electrolytes varied so as to make the seven coordinate points distribute in the ternary coordinate system to form a forcasting region by the connection of them. Their conductivities were tested and the conductivity value in the forecasting region was calculated based on the tested value by mass triangle model. Conductivity isolines formed in the region and blank area showing no forecasted value existed simultaneously. Optimized electrolyte with superior conductivity was selected according to conductivity variation trendency combined with the attention paid to the no-value-shown blank area. The conductivity of optimized electrolyte{m[ethyl carbonate(EC)]:m[propylene carbonate(PC)]:m[ethylmethyl carbonate(EMC)]=0.19:0.22:0.59} was 0.745 mS/cm at -40 ℃, increased by a factor of 51.4% compared to 0.492 mS/cm of common electrolyte[m(EC):m(PC):m(EMC)=1:1:1]. The accuracy of mass triangle model was demonstrated from the perspective that the maximum value existed in the blank area. Batteries with this optimized electrolyte exhibited a better performance. 相似文献
12.
Yong-Kook Choi Jong-Geun Park Kwang-il Chung Byeong-Doo Choi Woo-Seong Kim 《Microchemical Journal》2000,64(3)
The co-solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used to investigate the decomposition of electrolyte in Li-ion batteries. The electrolyte solutions were prepared by mixing in various volume ratios from pure DEC to 7:3 (EC:DEC). The potentials at which they are decomposed on the anodic electrode were examined using cyclic voltammetry. It was found that some kinds of reduction reactions proceeded and a film on the surface of the anode was formed. The film showed different properties, which were dependent on the mixing ratio of the solvents. From our results, we concluded that the best composition ratio of EC:DEC in 1 M LiPF6/(EC+DEC) system was approximately 4:6 (EC:DEC, volume ratio). 相似文献
13.
Nan Wu Po‐Hsiu Chien Yumin Qian Yutao Li Henghui Xu Nicholas S. Grundish Biyi Xu Haibo Jin Yan‐Yan Hu Guihua Yu John B. Goodenough 《Angewandte Chemie (International ed. in English)》2020,59(10):4131-4137
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C. 相似文献
14.
15.
《印度化学会志》2023,100(6):101009
It is crucial to obtain a reliable electrolyte system that is used for replacing thermally unstable and the moisture sensitive LiPF6 salt in liquid electrolytes for developing excellent cycle stability lithium ion batteries with high safety. In this work, a kind of hybrid electrolytes, adding Ga–Bi co-doped Li7La3Zr2O12 (LLZO) into LiTFSI based commercial electrolyte, was successfully prepared. The results shows that adding Ga–Bi co-doped LLZO ceramic particles is benefit for enhancing conductivity of LiTFSI based commercial electrolyte, which is 3.14 mS cm−1 from 3.02 mS cm−1. Furthermore, the LiFePO4| |Li cell assembling with LiTFSI based electrolyte with Ga–Bi co-doped LLZO ceramic particles shows good cycle performance and coulomb efficiency (100% except for the initial cycle value of 88%) due to a passivation multi-element film formed for preventing severe corrosion to the Al foil. The battery delivered a high first cycle discharge capacity of 144.2 mAh g−1 (85% of theoretical LiFePO4.) and a maximum value of 152.6 mAh g−1 after the 69th cycle. After the 300 stable cycle, the capacity of 130.8 mAh g−1 (85.7% of the maximum data) remained. 相似文献
16.
S. Y. Li P. H. Ma S. T. Song Q. D. Ren F. Q. Li 《Russian Journal of Electrochemistry》2008,44(10):1144-1148
The solid-state reaction was employed to obtain LiBOB in vacuum dryer at 100°C, with the dryer of P2O5. The resulting LiBOB was employed in various ternary solvent blends to get the k, and its change with salt, solvent composition and temperature. 0.7 M LiBOB-PC/EMC/DMC (1: 1: 1, v: v: v) and 0.5 M LiBOB-EC/EMC/DMC
(1: 1: 1, v: v: v) were observed to have better k at wide θ range, and the former was chosen to assemble Li/MCMB and LiFePO4/Li cells. The results indicated that it can stabilize the MCMB anodes, and exhibit good stability in LiFePO4/Li cell.
Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1231–1236.
The text was submitted by the authors in English. 相似文献
17.
CHEN Ya-guang * WANG Cun-guo ZHANG Xi-yan XIE De-min WANG Rong-shun Faculty of Chemistry Northeast Normal University Changchun P. R. China 《高等学校化学研究》2004,20(1):77-80
IntroductionThesecondarylithium ionbatterieshaverecentlybecomeoneofthechemicalenergysourceswhichhavebeenresearchedanddevelopedintheworldbecauseoftheirbiggerspecificcapacity ,lighterweight ,higheroperatingvoltage ,longercycliclifeandbettersecuri ty[1— 3] .LiClO4 ,LiAsF6 andLiPF6 aremainlyusedaselectrolytesinthecommercializedlithium ioncellsintheworldinspiteoftheirdisadvantages:LiClO4 isalittleunsafewhichwillbedetonablewhenbeingbumpedandishygroscopic ;LiAsF6 ispoisonousanditisanenvironment… 相似文献