首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-power gyrotron, employing an internal converter that produces a Gaussian-like output mode, has been designed and tested. The tube employed a TE22.6.1-mode interaction cavity that was designed for operation at a frequency of 110 GHz. An internal converter, consisting of an advanced launcher design and four mirrors, produced a Gaussian mode that had a relatively uniform profile at the tube output window to minimize the peak power density. Tests on the tube resulted in output power levels of 680, 530, and 350 kW for pulse durations of 0.5, 2.0, and 10.0 s, respectively. Measurements of the temperature of the output window were made during the long-pulse tests. Output power levels of 1 MW were achieved under short-pulse (1 ms) operation and the tube was operated at CW power levels in excess of 100 kW  相似文献   

2.
The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE(11,2) and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE(11,2,q). The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%.  相似文献   

3.
We consider a general concept of construction, the possible versions, and specific features of a gyrotron, whose output power in CW oscillation regime can reach a few kilowatts at a frequency of 300 GHz. The gyrotron is designed for work in a high-frequency facility in combination with a “dry” cryomagnet, which ensures a magnetic field of up to 12 T, required for the gyrotron operation. The basic results of numerical simulation and optimization of the electron gun, the resonant cavity, and other subsystems of the gyrotron are presented. The designs used for the gyrotron development are justified. Preliminary experiments showed the efficiency of the pilotproduction gyrotron with an output power of about 2 kW, which is record-breaking in this frequency range. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 6, pp. 461–470, June 2007.  相似文献   

4.
The design and operation of a 100 kW, 140 GHz pulsed gyrotron are reported. To our knowledge, this is the highest frequency at which high gyrotron output power (>-100 kW) has been achieved. Results are presented for gyrotron operation in the range of magnetic field from 4 to 7 T, voltage from 23 to 80 kV and current up to 7.5 A. Near a value of magnetic field of 5.4 T, and output power of 100 kW was obtained at 140.4 GHz in single mode operation in the TE031 resonator mode.  相似文献   

5.
The operational features of a 140-GHz, transverse electric TE22,6 mode gyrotron oscillator with an advanced quasi-optical mode converter, a Brewster window, and a single-stage depressed collector at 140 GHz with an output power of 2.1 MW and an efficiency of 34% without depressed collector and 53% with depressed collector are presented. The high output power level is possible due to an almost reflectionless termination of the radio frequency (RF) beam line outside the tube. The operation of the TE22,6 mode gyrotron is described in detail, and the significant features for achieving the high-output power are pointed out  相似文献   

6.
HL-2A装置电子回旋共振加热系统的主要指标是2MW/1s/68GHz,系统由4个单元组成,每个单元包括一只回旋管,微波传输系统,控制保护测量和冷却等子系统。通过对ECRH系统和回旋管的调试,每只管子微波输出功率500kW,脉冲宽度1s,四管并联运行时总输出功率达到1.63MW,系统使用效率高于80%。  相似文献   

7.
A further step in the development of a coaxial-cavity gyrotron operated in the transverse electric TE-31,17 mode at 165 GHz is presented. The gyrotron has been equipped with a quasi-optical output system consisting of a Vlasov launcher with a single cut and two mirrors, one with a quasi-elliptic and the other with a nonquadratic phase correcting surface. The radio frequency (RF) power is transmitted through a single output window. A maximum output power of 1.7 MW has been achieved. At the nominal operational parameters an RF power of 1.3 MW with an efficiency of 27.3% has been measured. The efficiency increases to 41% in operation with a single-stage depressed collector  相似文献   

8.
The first cw operation of our submillimeter wave gyrotron (Gyrotron FU IV) using a 12 T superconducting magnet has been successfully carried out. Output power is more than 20 W at a frequency of 301 GHz in the TE031 resonant cavity mode. Time-resolved frequency measurement s shows that the frequency fluctuation of the gyrotron output is smaller than 2 MHz. This frequency fluctuation is mainly due to the fluctuation in the output voltage of the power supply.  相似文献   

9.
Design of a CW 1 THz gyrotron at second harmonic operation using a 20 T superconducting magnet has been described. The mode competition analysis is employed to investigate operation conditions of second harmonic mode, which is being excited at the frequency ranging from 920 GHz to 1014 GHz. The output power up to 250 watt corresponding to the efficiency of 4.16 percent could be achieved by using an electron beam with accelerating voltage 30 kV and current 200 mA. The important advantage of this gyrotron is that the single mode excitation at second harmonic, and extremely high frequency of the radiation, could be maintained even at high currents. It opens possibility to realize a high power radiation source at 1 THz. Such gyrotron is under construction at FIR Center, University of Fukui.  相似文献   

10.
A theoretical and experimental investigation of the operation of a harmonic gyrotron at submillimeter wavelengths is reported. Using a waveguide cavity with an iris at the output end of the straight section, 14 different second-harmonic modes were observed with frequencies of 301-503 GHz, output powers of 1-22 kW, and a 12-MHz emission frequency bandwidth. The highest output power was 22 kW, with a total efficiency of 3.5% at 467 GHz, and an output power of 15 kW with a 6% efficiency was obtained at 417 GHz. Research was conducted using a 65-75 kV up to 10-A electron gun with a 1/1.5-μs pulse length and a 4-Hz repetition rate, which produced a helical electron beam in magnetic fields of up to 14 T. These results represent the first operation of a high-power harmonic gyrotron in the submillimeter region  相似文献   

11.
首次实现直流磁体W波段二次谐波回旋管连续波稳定运行。回旋管工作时所需1.8 T磁场由一个水冷直流线圈产生。直流线圈励磁电流为500 A,功耗28 kW,内孔直径66 mm,可直接将回旋管插入内孔中。回旋管内电子束由双阳极磁控注入电子枪产生。采用高效率内置准光模式变换器实现束波分离并输出准高斯波束。研制的回旋管工作频率为94.08 GHz,腔内工作模式为TE02。实验中成功实现5 min连续稳定运行,输出功率达到12 kW。电子束电压为45 kV,电流1.7 A,对应的输出效率15.7 %。  相似文献   

12.
To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 musec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given.  相似文献   

13.
Phase-locking in a 34.5-GHz special complex cavity gyrotron oscillator operating at the second harmonic of the electron cyclotron frequency was studied. Injection of the locking power was made via a quasi-optical circulator connected to the gyrotron output. Locking bandwidth was measured by comparing the phase of the injection signal and output signal using a balanced mixer. Locking was observed with input power level as low as 40 dB below the gyrotron output power. The locking bandwidth is, however, narrower than in gyrotrons operating at the fundamental cyclotron frequency which may be attributed to the longer resonant cavity in the second harmonic gyrotron and the corresponding larger value of external quality factor. The measurements are roughly in agreement with predictions of Adler's phase-locking equation which is given for our system in terms of powers propagating in the output waveguide toward and away from the gyrotron cavity  相似文献   

14.
Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator   总被引:1,自引:0,他引:1  
We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE(0,6,1) mode near 460 GHz. The gyrotron also operates in the second harmonic TE(2,6,1) mode at 456 GHz and in the TE(2,3,1) fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE(0,6,1) mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T.  相似文献   

15.
首次实现W波段三次谐波回旋管输出功率突破10kW。谐波回旋管互作用结构采用带有光阑结构的圆柱型开放式谐振腔,工作模式为低损耗圆对称模式TE02。实验中,在脉冲宽度20μs、电子束电压45kV、电流3A、磁场1.23T时,测得工作频率为95.22GHz,输出功率13.4kW,对应效率9.9%。  相似文献   

16.
Gyrotron FU CW II with an 8 T liquid He free superconducting magnet, the second gyrotron of the THz Gyrotron FU CW Series, has been constructed and the operation test was successfully carried out. It will be used for enhancing the sensitivity of 600 MHz proton-NMR by use of Dynamic Nuclear Polarization (DNP). The designed operation mode of the gyrotron is TE2,6 at the second harmonic. The corresponding frequency is 394.6 GHz. The real operation frequency is 394.3 GHz at TE06 mode, because of fabrication error of the diameter of the cavity. The operation is in complete CW at the output power of around 30 W or higher at the TE06 cavity mode. There are many other operation modes at the fundamental and the second harmonic. Typical output power of the fundamental and the second harmonic are higher than 100 W and 20 W, respectively. The highest frequency observed up to the present is 443.5 GHz at the second harmonic operation of TE6,5 mode. The measured results are compared with the theoretical consideration.  相似文献   

17.
A CW gyrotron for the sensitivity enhancement of NMR spectroscopy through dynamic nuclear polarization has been designed. The gyrotron operates at the second harmonic and frequency of 394.6 GHz with the main operating mode TE0,6. Operating conditions of other neighboring cavity modes such as TE2,6 at frequency of 392.6 GHz and TE2,3 at frequency of 200.7 GHz were also considered. The experimental conditions of the gyrotron at low and high voltages are simulated. The output power of 56 watts corresponds to the efficiency of 2 percent at low voltage operation and frequency of 394.6 GHz is expected.  相似文献   

18.
赵其祥  冯进军  吕游  郑树泉  张天钟 《强激光与粒子束》2021,33(9):093007-1-093007-8
太赫兹回旋管可实现高功率输出,并具有一定的频率调谐范围,是核磁共振波谱系统理想的高功率太赫兹辐射源。设计了263 GHz,TE5,2基波连续调谐回旋管,通过磁场调节实现频率调谐范围为1.39 GHz,利用时域多模多频自洽非线性理论对设计的连续调谐回旋管非稳定振荡状态进行了研究。结果表明,在低次纵向谐波模式工作磁场范围内,当工作电流大于起振电流时,连续调谐回旋管先进入稳定状态,高次纵向谐波模式被抑制,工作模式TE5,2的输出功率随时间不变;当电流增大,纵向谐波模式间的竞争引起回旋管由稳定状态进入到非稳定振荡状态,工作模式TE5,2的输出功率随时间呈振荡变化且互作用效率大大降低;随着电流的进一步增大,回旋管又回到与低电流不同的稳定状态,互作用效率进一步降低。同时发现非稳定振荡状态的起始电流随着磁场增加而增大。本研究对需工作于稳定状态的面向DNP-NMR应用的连续调谐太赫兹回旋管的研制具有一定指导意义。  相似文献   

19.
The TE22,6-mode gyrotron operated at Forschungszentrum Karlsruhe at a frequency of 140 GHz has been investigated with respect to the behavior of different emitter materials, step tunability and reflections of the output beam. Two different materials of an emitter ring, LaB6 and a coated dispenser cathode, were used to test the features of the gyrotron. The output power was found to be independent from the cathode material, as long as a new emitter ring was used. Aging of the emitter led to a slightly decreased output power. The gyrotron also was operated with a Brewster window. The broad-band characteristics of this window made it possible to measure the neighboring frequencies in a frequency range extending from 114 to 166 GHz. Only a slight dependence of the output power has been found over the whole frequency range. The Brewster window also allows us to investigate the influence of reflections on the output power. A strong decrease of the output power was found even for very small reflections. Tilting the power calorimeter (the reflections were measured to be less than 1%) increased the output power by about 20% to 1.6 MW at an efficiency of 36.2%. With a collector depression voltage of 35 kV for energy recovery, efficiencies of 60% at the above-mentioned output power were obtained  相似文献   

20.
设计了基于弧形Blumlein 脉冲成形网络(Blumlein PFN)的LTD型重复频率长脉冲功率模块。该模块将四路阻抗均为24 的弧形Blumlein PFN对称分布在LTD外筒圆周上,连接于LTD的初级绕组上,并采用两个激光触发放电开关同步驱动,整个脉冲功率模块结构紧凑,缩短了高压馈线和开关引线长度,有利于形成良好脉冲波形。在此基础上研制了两模块重复频率长脉冲功率源,实验结果表明,研制的长脉冲功率源在5 Hz重频运行时假负载上输出脉冲幅值约为260 kV,脉冲功率达到5.2 GW,脉冲宽度约170 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号