首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow in the separation region of laminar boundary layer behind a rectangular backward-facing step has been experimentally examined under temperature non-uniformity of the flow. The data were obtained in a subsonic wind tunnel at Reynolds numbers M ? 1. The temperature disturbance was generated using a system of Peltier elements provided on the model surface upstream of the separation line. The effect of heating/cooling of the wall on the mean and fluctuating flow components was evaluated using hot-wire measurements. The experimental data were supplemented with calculations of linear-stability characteristics of model velocity profiles in the separated boundary layer. As a result, the response of the separated flow to a stationary thermal perturbation was revealed.  相似文献   

2.
The spectral levels of the quadrupole noise generated by a boundary layer flow over a smooth surface are calculated. Explicit dependences of the noise levels on the Reynolds number are obtained for the low-frequency and high-frequency ranges. It is shown that the logarithmic zone of the velocity profile is responsible for the region of the quadrupole noise spectrum with a hyperbolic dependence on frequency. A method of calculating the dipole noise of a boundary layer flow over a rough surface is developed. The method is based on the use of the combined probability density for the turbulent velocity fluctuations and the random dimensions of protuberances of the rough surface. The two constants involved in this theory are determined from a special experiment. It is shown that the surface roughness noticeably increases the radiation levels of a boundary layer flow in a certain frequency range.  相似文献   

3.
超声速层流/湍流压缩拐角流动结构的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
武宇  易仕和  陈植  张庆虎  冈敦殿 《物理学报》2013,62(18):184702-184702
Ma=3.0的超声速风洞中, 分别对上游边界层为超声速层流和湍流, 压缩角度为25°和28°的压缩拐角流动进行了实验研究. 采用纳米粒子示踪平面激光散射(NPLS)技术获得了流场整体和局部区域的精细结构, 边界层、剪切层、分离激波、回流区和再附激波等典型结构清晰可见, 测量了超声速层流压缩拐角壁面的压力系数. 从时间平均的流场结构中测量出分离激波、再附激波的角度和再附后重新发展的边界层的增长情况, 通过分析时间相关的流场NPLS图像, 可以发现流场结构随时间的演化特性. 实验结果表明: 在25°的压缩角度下, 超声速层流压缩拐角流动发生了典型的分离, 边界层迅速增长失稳转捩, 并引起一道诱导激波, 流场中出现了K-H涡、剪切层和微弱压缩波结构, 而超声速湍流压缩拐角流动没有出现分离, 湍流边界层始终表现为附着状态; 在28° 的压缩角度下, 超声速层流压缩拐角流动进一步分离, 回流区范围明显扩大, 诱导激波、分离激波向上游移动, 再附激波向下游移动, 分离区流动结构复杂, 相比之下, 超声速湍流压缩拐角流动的回流区范围明显较小, 边界层增长缓慢, 流场中没有出现诱导激波、K-H涡和压缩波, 流动分离区域的结构也相对简单, 但分离激波的强度则明显更强. 关键词: 压缩拐角 层流 湍流 流动结构  相似文献   

4.
In the present article, we investigate the possibility of using simple physical models for predicting properties of incompressible turbulent boundary layer on permeable wall at various values of air-microblowing mass flow rate. It is shown that the velocity scaling U ??*/?? 99 can be successfully used to approximate the distribution of mean velocity in the outer region of the boundary layer. The use of this scaling makes the velocity profiles invariant with respect to Reynolds-number variation; this circumstance largely facilitates the analysis of experimental data, making it independent of upstream flow conditions. The distribution of mean velocity in the logarithmic flow region of the boundary layer over permeable surface can be described with a modified law of the wall involving a constant C 0 equal to the same constant for canonical boundary layer, and a quantity K being a weak function of blowing ratio.  相似文献   

5.
Direct numerical simulations of shock wave and supersonic turbulent boundary layer interaction in a 24° compression ramp with adiabatic and cold-wall temperatures are conducted. The wall temperature effects on turbulence structures and shock motions are investigated. The results are validated against previous experimental and numerical data. The effects of wall cooling on boundary layer characteristics are analysed. Statistical data show that wall cooling has a significant effect on the logarithmic region of mean velocity profile downstream the interaction region. Moreover, the influence of wall temperature on Reynolds stress anisotropy is mainly limited in the near-wall region and has little change on the outer layer. As the wall temperature decreases, the streamwise coherency of streaks increases. Based on the analysis of instantaneous Lamb vector divergence, the momentum transport between small-scale vortices on cold-wall condition is significantly enhanced. In addition, spectral analysis of wall pressure signals indicates that the location of peak of low-frequency energy shifts toward higher frequencies in cold case. Furthermore, the dynamic mode decomposition results reveal two characteristic modes, namely a low-frequency mode exhibiting the breathing motion of separation bubble and a high-frequency mode associated with the propagation of instability waves above separation bubble. The shape of dynamic modes is not sensitive to wall temperature.  相似文献   

6.
Laminar-turbulent transition in a boundary layer of low-aspect-ratio wing was investigated. Experiments clarifying the flow structure, its mean and oscillatory characteristics were carried out accompanied by linear stability analysis of the wind tunnel data on the laminar flow velocity profiles. Theoretical results obtained in a parallel flow approximation are in a good agreement with the experimental data on disturbances evolution at the initial stage of transition to turbulence. The study was supported by the Ministry of Education and Science of the Russian Federation (Grant No. RNP 2.1.1.471) and Russian Foundation for Basic Research (Grant No. 03-01-06145)  相似文献   

7.
王维  管新蕾  姜楠 《中国物理 B》2014,23(10):104703-104703
The present experimental work focuses on a new model for space–time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wall. A turbulent boundary layer flow at Reθ= 2460 is measured by tomographic particle image velocimetry(tomographic PIV). It is demonstrated that arch, cane,and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space–time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space–time correlation instead of Taylor hypothesis. The convection velocities derived from the space–time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition(FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition(POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.  相似文献   

8.
The tonal noise radiated by a two-dimensional cavity submerged in a low-speed turbulent flow has been investigated computationally using a hybrid scheme that couples numerical flow computations with an implementation of the Ffowcs Williams-Hawkings equation. The turbulent near field is computed by solving the short-time-averaged, thin-layer approximation of the Navier-Stokes equations, with turbulence modelled by the Wilcox k-ω model. Second order spatial and temporal discretization schemes with fine grids in the immediate region of the cavity and a small time step were used to capture the unsteady flow physics. Along all external boundaries, a buffer zone is implemented to absorb propagating disturbances and prevent spurious numerical reflections. Comparisons with experimental data demonstrate good agreement in both the frequency and amplitude of the oscillations within the cavity. The unsteady characteristics of the cavity flow are discussed, together with the mechanisms for cavity noise generation. The influence of freestream flow velocity and boundary layer thickness on the frequency and amplitude of the oscillations within the cavity and the nature of the noise radiated to the far field are also investigated. Results indicate that both the frequency and amplitude of oscillation are sensitively dependent on the characteristics of the shear layer spanning the mouth of the cavity.  相似文献   

9.
旋转盘腔流场速度与压力的实验研究   总被引:5,自引:1,他引:4  
本文描述一个旋转盘腔流场的实验研究。该盘腔由一个旋转盘,一个静止盘及静止的外围屏组成.实验表明在盘腔的两个盘面上都有边界层形成,在边界层中,流体除有切向速度外,还有沿径向的二次流存在。在边界层外的核心区中径向速度为零。一般来说,静盘边界层比转盘边界层向紊流转捩地要早。另外,压力的测量表明,在半径较大的区域中压力分布可由“流体以恒角速度旋转”的假设所得的结果近似。  相似文献   

10.
This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien–Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack.  相似文献   

11.
The viscose flow and microstructure formation of Fe-Cu peritectic alloy melts are investigated by analyzing the velocity and temperature fields during rapid solidification, which is verified by rapid quenching experiments. It is found that a large temperature gradient exists along the vertical direction of melt puddle, whereas there is no obvious temperature variation in the tangent direction of roller surface. After being sprayed from a nozzle, the alloy melt changes the magnitude and direction of its flow and velocity rapidly at a height of about 180 μm. The horizontal flow velocity increases rapidly, but the vertical flow velocity decreases sharply. A thermal boundary layer with 160–300 μm in height and a momentum boundary layer with 160–240 μm in thickness are formed at the bottom of melt puddle, and the Reynolds number Re is in the range of 870 to 1070 in the boundary layer. With the increase of Re number, the cooling rate increases linearly and the thickness of thermal boundary layer increases monotonically. The thickness of momentum boundary layer decreases slowly at first, then rises slightly and decreases sharply. If Re < 1024, the liquid flow has remarkable effects on the microstructure formation due to dominant momentum transfer. The separated liquid phase is likely to form a fiber-like microstructure. If Re>1024, the heat transfer becomes dominating and the liquid phase flow is suppressed, which results in the formation of fine and uniform equiaxed microstructures. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105)  相似文献   

12.
超声速平板圆台突起物绕流实验和数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
冈敦殿  易仕和  赵云飞 《物理学报》2015,64(5):54705-054705
高速飞行器表面不可避免的存在突起物并形成复杂流场, 从而引起飞行器气动特性和热载荷的变化; 同时, 突起物是流动控制的重要方法之一, 合适的突起物形状及安装位置对于改善冲压发动机进气道性能有重要意义. 本文采用基于纳米粒子的平面激光散射技术(NPLS)研究了马赫3.0来流边界层为层流的平板上三个不同高度圆台突起物绕流流场, 主要关注了突起物后方的尾迹边界层, 并采用高精度的显式五阶精度加权紧致非线性格式(WCNS-E-5)离散求解Navier-Stokes方程模拟了该流场. 获得了超声速圆台绕流精细流场结构, 观察到突起物后方尾迹区域边界层发展的过程. 结合实验和数值模拟结果可以发现, 当圆台高度接近或者小于当地边界层厚度时, 突起物对边界层的扰动非常弱, 圆台后方尾迹边界层能够维持较长距离的层流状态, 在边界层转捩阶段也有清晰的发卡涡结构出现; 反之, 边界层受到的扰动明显增大, 在突起物后方很快发展为湍流; 风洞噪声对本文研究圆台引起的边界层扰动有一定影响, 实验获得的边界层转捩位置要比数值结果靠前. 基于NPLS流场图像, 采用间歇性方法分析了圆台突起物后方边界层的特性, 对于高度大于边界层厚度的圆台其间歇性曲线较为接近并且更加饱满, 边界层的脉动也更为强烈.  相似文献   

13.

Abstract  

Wind-tunnel data on velocity perturbations evolving in a laminar swept-wing flow under low subsonic conditions are reported. The focus of the present experiments are secondary disturbances of the boundary layer which is modulated by stationary streamwise vortices. Both the stationary vortices and the secondary oscillations of interest are generated in a controlled manner. The experimental data are obtained through hot-wire measurements. Thus, evolution of the vortices, either isolated or interacting with each other, is reconstructed in detail. As is found, the secondary disturbances, initiating the laminar-flow breakdown, are strongly affected by configuration of the stationary boundary-layer perturbation that may have an implication to laminar–turbulent transition control.  相似文献   

14.
Simulation of a thick turbulent boundary layer via a rod grid   总被引:1,自引:0,他引:1  
A possibility to simulate a thick Clauser-equilibrium incompressible turbulent boundary layer on a flat plate of finite length with the help of a grid formed by cylindrical rods was experimentally examined. A grid with rods oriented parallel to the streamlined surface proved to be an efficient tool enabling modification of the turbulent boundary layer. In most cases, at a distance of 600 rod diameters the time-average and fluctuation characteristics of the modified boundary layer exhibited values typical of a natural turbulent boundary layer. It is shown that the mean velocity profiles with artificially increased boundary-layer thickness can be represented, to a good accuracy, in terms of law-of-the-wall variables, and they can be generalized with a single dependence using an empirical velocity scale in the outside region. The use of a combined method for exerting an influence on the shear flow capable of improving the modeling procedure for turbulent velocity fluctuations in boundary layer is proposed.  相似文献   

15.

A systematic numerical study of a low Reynolds number laminar diffusion flame is presented. The configuration used is that of a boundary layer flow established over a flat plate burner. The importance of this configuration relies on its potential use for the assessment of the flammability of materials to be used in space vehicles. The study focuses on the validity of boundary layer formulations to the study of these flames. The characteristic velocities are representative of microgravity environments [O(100 mm/s)]. Parietal injection results eventually in flow separation establishing two characteristic regimes: non-separated and separated flows. Non-separated flows show an increased local acceleration but allow the use of two-dimensional assumptions at the plane of symmetry. It was demonstrated that classical boundary layer assumptions can be used if the flow is non-separated. Three-dimensional flow fields at the trailing edge of the injection zone characterize separated flows. Energy release enhances the positive pressure perturbations and leads to flow acceleration that cannot be damped by viscous shear. Acceleration appears at the vicinity of the flame, thus it is dramatically amplified by the decreased density in this region. Significant errors are generated if boundary layer assumptions are used to describe diffusion flames established in separated flows.  相似文献   

16.
Large-eddy simulations were carried out to study the effects of surface roughness on a plane wall-jet using the Lagrangian dynamic eddy-viscosity subgrid-scale model, at Re = 7500 (based on the jet bulk velocity and height). Results over both smooth and rough surfaces were validated by experimental data at the same Reynolds number. As the jet is injected into the still environment, large-scale rollers are generated in the shear layer between the high-momentum fluid of the jet and the surrounding and are convected downstream with the flow. To understand the extent to which the outer-layer structures modify the flow in the inner layer and the extent to which the effect of roughness spreads away from the wall, both instantaneous and mean flow fields were investigated. The results revealed that, for the Reynolds number and roughness height considered in this study, the effect of roughness is mostly confined to the near-wall region of the wall jet. There is no structural difference between the outer layer of the wall jet over the smooth and rough surfaces. Roughness does not affect the size of the outer-layer structures or the scaling of the profiles of Reynolds stresses in the outer layer. However, in the inner layer, roughness redistributes stresses from streamwise to wall-normal and spanwise directions toward isotropy. Contours of joint probability-density function of the streamwise and wall-normal velocity fluctuations at the bottom of the logarithmic region match those of the turbulent boundary layer at the same height; while the traces of the outer-layer structure were detected at the top of the logarithmic region, indicating that they do not affect the flow very close to the wall, but still modify a major portion of the inner layer. This modification must be taken into consideration when the inner layer of a wall jet is compared with the conventional turbulent boundary layer.  相似文献   

17.
The laminar boundary layer separation flow over a two-dimensional bump controlled by synthetic jets is experimentally investigated in a water channel with hydrogen-bubble visualisation and particle image velocimetry (PIV) techniques. The two-dimensional synthetic jet is applied near the separation point. Two Reynolds numbers (Re = 700 and 1120) based on the bump height and free-stream velocity are adopted in this experiment, and seven different excitation frequencies at each Reynolds number are considered, focusing on the separation control as well as the vortex dynamics. The experimental results show that the optimal control can only be achieved within some excitation frequencies at both Reynolds numbers. However, beyond this range, further increasing the excitation frequency leads to an increase in the separation region. The proper orthogonal decomposition (POD) technique and vortex identification by swirling strength (Λci) are applied for the deeper analysis of the separated flow. The reconstructed Λci field by the first four POD modes is used and vortex lock-on phenomenon is observed. It is found that the negative synthetic jet vortex with clockwise rotation draws the separated wake shear layer as it is convected downstream, and then they syncretise together. Thus, the new vortex is induced and shedding downstream periodically.  相似文献   

18.
本文对水平槽道内发汗冷却建立了包括主流区、多孔壁面区和致密壁面区在内的完整的物理模型和数学描述, 对耦合传热过程开展了数值模拟,对平板发汗冷却的机理进行了深入的研究。研究表明:发汗冷却减小了壁面处的速度梯度,使下壁面边界层明显增厚;随着冷却流体的注入,壁面处的湍流应力明显增大;湍流应力的最大值向没有发汗冷却的壁面一侧偏移,并且增加了最大湍流应力;边界层的增厚使得发汗冷却区域壁面摩擦阻力系数降低。随着冷却剂流量的增大,壁面温度也随之下降;数值模拟结果与实验结果较好地吻合。  相似文献   

19.
A technique is developed for measuring the intensity of the frequency-wave spectrum components of wall pressure fluctuations of the turbulent boundary layer in a quiet aeroacoustic installation with the use of wave filters in the form of rectangular plates. Aluminium-alloy and organic-glass plates of various thickness under a fine-meshed screen are used, set up rigidly flush with the polished wall of the working part of the installation. The experimental data testify to the fundamental possibility of determining the field components of wall pressure fluctuations of the turbulent boundary layer using similar wave filters in the subconvective region, where a substantially lower pressure fluctuation intensity is observed in comparison to the intensity in the region of the convective maximum of the frequency-wave spectrum at a small flow velocity.  相似文献   

20.
A spatially one-dimensional model of a plane active double layer between two homogeneous elastic half-spaces is studied analytically. The layer synthesizes a preset smooth trajectory of the controlled boundary between the media without any mechanical support. The outer layer of the coating is a piezoelectric, and the inner layer is a polymer that is transparent for low-frequency sound and opaque for high-frequency sound because of dissipation. An algorithm for controlling the piezoelectric elements of the layer on the basis of signals from surface particle-velocity sensors is proposed, and a method for measuring the particle velocity is developed. Conditions of stability and efficiency of the synthesis are formulated. It is shown that the active layer thickness can be much smaller than the wavelength corresponding to the minimal time scale of the boundary trajectory to be formed. The accuracy of the trajectory synthesis depends on the accuracy of measuring, computing, and actuating elements of the system but does not depend on the vibroacoustic characteristics of the half-spaces separated by the active layer or on the presence of smooth waves in these half-spaces. For the synthesis to be efficient, the operating frequency band and the dynamic range of sensors and actuators should be many times greater than the frequency band and the dynamic range of the trajectory to be formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号