首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稀土掺杂上转换纳米粒子(RED-UCNPs)作为一种新型高效的上转换发光纳米材料,具有反斯托克斯位移大,发射光谱窄、发光寿命长、材料毒性低等优点,已成为荧光标记、光动力学治疗、生物成像和构建生物传感器等领域的研究热点。然而,目前广泛使用的溶剂热法合成的RED-UCNPs生物相容性和亲水性差,而且不具备与生物分子之间相偶联的活性基团,因此对RED-UCNPs进行表面功能化修饰就显得格外重要。本文重点综述了RED-UCNPs的表面功能化修饰的类型及其应用现状,为RED-UCNPs的进一步研究开发和应用提供思路和参考依据。  相似文献   

2.
Synthesis of magnetic nanoparticles and their application to bioassays   总被引:2,自引:0,他引:2  
Magnetic nanoparticles have been attracting much interest as a labeling material in the fields of advanced biological and medical applications such as drug delivery, magnetic resonance imaging, and array-based assaying. In this review, synthesis of iron oxide magnetic nanoparticles via a reverse micelle system and modification of their surface by an organosilane agent are discussed. Furthermore, as a practical biological assay system, the magnetic detection of biomolecular interactions is demonstrated by using the combination of a patterned substrate modified with a self-assembled monolayer and the magnetic nanoparticles.  相似文献   

3.
Yan Lv  Kun Li  Yapeng Li 《Chemical Papers》2013,67(11):1404-1413
In this paper, amphiphilic chitosan derivatives (N-octyl-N-mPEG-chitosan, mPEG = poly(ethylene glycol) monomethyl ether; OPEGC) were successfully synthesised via the Schiff base reduction reaction of chitosan and mPEG-aldehyde, or octanal, with chitosan acting as the backbone of the grafted copolymers, and mPEG-aldehyde providing the hydrophilic chain or octanal providing the hydrophobic alkyl chain. The synthesis was confirmed by characterisation employing Fourier transform infrared spectroscopy (FTIR) and 1H NMR. In the subsequent procedure, water-soluble quantum dots (QDs) and iron(II,III) oxide (IO) nanoparticles, widely used as nanoprobes in medical applications, were produced by the incorporation of QDs or IO inside the polymeric micelle core. Finally, the optical properties of QDs incorporated into OPEGC (OPEGC@QDs) were characterised by UV-VIS spectroscopy, fluorescence spectroscopy, cell viability was obtained through MTT, and the morphology of their assembly formed in water were observed by atomic force microscope (AFM) and transmission electron microscope (TEM) and the QDs content of OPEGC@QDs was calculated following thermo gravimetric analysis (TGA). In addition, the properties of IO incorporated into OPEGC (OPEGC@IO) were characterised by vibrating sample magnetometry (VSM), FT-IR, MTT, TGA, AFM, and TEM. The results indicated that the OPEGC composite nanoparticles with size narrowly distributed, good water solubility, and low cytotoxicity were prepared here, which represented a high quantum yield or good super-paramagnetism.  相似文献   

4.
To control the interfacial interaction in magnetic metal nanoparticles‐filled polymer composites, surfaces of iron, cobalt, and nickel nanoparticles were grafted by irradiation‐induced polymerization. On the basis of the study of dynamical mechanical behavior, thermal stability, and magnetic performance of the composites prepared by either solution mixing or in situ polymerization, the structure–property relationships of the composites are a function of interfacial interaction and the dispersion state of the nanoparticles. In addition, grafting of polymers onto the surface of the metal nanoparticles changed the surface magnetic state, leading to the possibility of purposely tailoring the magnetic behavior of the composites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1070–1084, 2003  相似文献   

5.
Polymers having oxide network chains are produced by hydrolytic polycondensation of metal alkoxides and alkoxysilanes. Molecular morphology and molecular size distribution of these inorganic polymers are strongly affected by certain nonchemical parameters. Included among these parameters is the molecular separation of interacting species during the polymerization. There is strong evidence that the molecular size expansion occurs by two distinct processes: initially by a gradual “growth” process, and later by “recombination” of high-molecular weight species. The later process often leads to a bi-modal molecular size distribution. The concentration of water-rich siloxane solutions leads to significant molecular size expansion by further oxide network formation. No similar polymer size growth occurs during the concentration of alcohol based solutions. This difference in the polymeric activities can be related to the difference in the terminal bond under the two different conditions.  相似文献   

6.
近年来纳米材料被广泛应用于生物医学、航空航天和精细化工等领域。构成纳米材料的纳米粒子具有小尺寸效应、表面效应和宏观量子隧道效应等性质。其中金纳米粒子由于其独特的荧光特性、良好的生物相容性和表面等离子共振等性质,被广大科研人员进行深入研究。例如,在生物医学领域,科研人员构建了一系列新型的金纳米比色传感器、光学探针及各类载药体系等。然而,目前金纳米粒子仍存在水分散性差、肾清除效率低和量子发射产率低等问题,限制了其广泛应用。因此,研究人员对金纳米粒子表面进行多样化修饰,从而能有效克服上述缺点。本文就目前主流配体表面修饰金纳米粒子的研究进展进行了详细总结,着重介绍了功能化金纳米粒子在生物成像、生物检测、生物治疗三方面的应用,最后对金纳米粒子的临床治疗机制的探索以及商业化的应用进行了展望,希望能为相关领域的研究者们提供新思路。  相似文献   

7.
Novel less than 100 nm sized magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles advantageous in respect of excellent biodegradation and high level of controllability are successfully prepared. TEM and SEM images showed the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by spherical chitosan nanoparticles. The release behavior of bovine serum albumin entrapped in the particles was of distinctly difference with the changes of pH value of loading medium. The release of bovine serum albumin in those two kinds of particles in the medium of pH=1.0 was much quicker in pH = 7.4 and 9.18. The amount of Bovine serum albumin (BSA) released from the particles at different time intervals was estimated using UV spectrophotomertic method at 279 nm. The dissolution profile and in vitro release kinetics showed that Co0.5Mn0.5Fe2O4-chitosan nanoparticles were promising for controlled delivery of the drug.  相似文献   

8.
The lyophobic surface of monodisperse magnetic nanoparticles capped by oleic acid was made to be more lyophilic by ozonolysis to increase the stability of the suspension in polar solvents like ethanol. The ozone oxidatively cleaved the double bond of oleic acid to form carbonyl and carboxyl groups on the surface of the nanoparticles. Additionally, interfacial ligand exchange of the capping molecules was applied to make the hydrophobic particle surface more hydrophilic. The magnetic particles showed enhanced miscibility and short-term stability in water after interfacial ligand exchange. The structure changes of the capping molecules on the nanoparticle surfaces were investigated using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). From these spectroscopy studies, the cleavage of the oleic acid and the formations of the carboxyl and carbonyl groups on the particle surface were confirmed. The shape and the magnetic properties of the nanoparticles were maintained after the surface modification. Ozonolysis is an effective method in modifying the lyophobic surface of the magnetic nanoparticles.  相似文献   

9.
Superparamagnetic dextran nanoparticles were prepared by coprecipitation. Effects of concentration of dextran, amount of ironic salts, stirring speed, concentration of ammonium hydroxide and mole ratio of Fe3+/Fe2+ on the effective diameter of dextran magnetic nanopartides (DMNP) were studied. Dextran immunological magnetic nanoparticles (DIMNP) were formed by the reaction of the monoclonal anti-human mammary cancer antibody with DMNP oxidized by sodium periodate, and the properties of magnetic susceptibility, shape and retention of antibody activity were investigated. The in vitro cancer antigen binding ability of DIMNP was demonstrated by radioimmunoassay, and the in vivo magnetic localization and antibody targeting ability of radiolabeled DIMNP were studied.  相似文献   

10.
Surface modification of Y2O3 nanoparticles   总被引:1,自引:0,他引:1  
Rare earth ion-doped yttrium oxide (Y2O3) nanocrystals are nontoxic and can be prepared as upconversion materials for cellular imaging, but they do not suspend well in water. In contrast to their tendency to dissolve in acidic media, yttria (Y2O3) nanoparticles readily react with phosphonic acids to give phosphonate-bonded yttria particles. Through the choice of phosphonic acid, the hydrophilicity of the nanoparticles can be controlled. The synthesis of a novel tetraethylene glycol-derived phosphonic acid is described; yttria treated with the corresponding phosphonate is easily dispersed in aqueous media. The preparation of yttria bonded to a phosphonate that may be used for cross coupling with biomolecules is also described.  相似文献   

11.
Magneto-phosphorescent d-f coordination polymer nanoparticles (f-CPPs) were conveniently synthesized by phosphorescent carboxyl-functionalized iridium complexes as building blocks and magnetic Gd(III) ions as metallic nodes. They reveal uniform hollow spheres with an average diameter of around 60 nm and wall thickness of about 10 nm. Water soluble f-CPPs were obtained by polyvinylpyrolidone modification (denoted as f-CPPs@PVP), which had an intense red phosphorescence, moderate longitudinal relaxivity (r(1)) and low cytotoxicity. Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and confocal laser scanning microscopy (CLSM) confirmed f-CPPs@PVP could be taken up by living cells effectively. Therefore, they should be a novel nano-bioprobe for the multimodal imaging of cancer cells.  相似文献   

12.
Tin oxide, antimony-doped tin oxide (ATO), and silica nanosized particles in aqueous dispersion were reacted with various amounts of 3-methacryloxypropyltrimethoxysilane (MPS). The kinetics were followed by 29Si NMR and the products were analyzed by FTIR and 29Si NMR. The kinetic experiments on ATO and silica revealed that the hydrolysis is the rate-determining step in these reactions. The reaction of MPS with the particles is favored over the homocondensation of MPS. Quantitative analysis using FTIR revealed that the amount of MPS grafted onto the tin oxide and silica particles is limited to the amount needed to fill one monolayer. For ATO the maximum amount of grafted MPS was only 50-70% of the amount that is needed for a closed monolayer. The MPS molecules are for the most part oriented parallel to the oxide surface, and a hydrogen bond between the MPS-carbonyl and the oxide is formed.  相似文献   

13.
A new method for the preparation of copper and zinc sulfides nanoparticles in homogeneous aqueous solutions using cysteine as a surface modifier was proposed. The size of the particles obtained is 5–7 and 1.5–3 nm for copper and zinc sulfides, respectively, depending on the concentration of the reactants. Associates of the nanoparticles 10–30 nm in size are formed in the system with an increase in the total concentrations of the sulfides. Sols of the nanoparticles obtained in cysteine solutions are resistant to oxidation and coagulation within several weeks. The variation of the synthesis conditions makes it possible to obtain zinc sulfide particles with optical properties related to size effects.  相似文献   

14.
Magnetic bioseparations such as adsorption and elution of nucleic acids by a mesoporous superparamagnetic silica-magnetite nanocomposite are reported.  相似文献   

15.
16.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

17.
In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modification schemes on nanoparticle nonspecific binding, the interaction between functionalized silica nanoparticles and a DNA chip was also studied using confocal imaging/fluorescence microscopy. Dye-doped silica nanoparticles functionalized with octadecyl and carboxylate groups showed minimal nonspecific binding. Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.  相似文献   

18.
磁性铁氧化物纳米粒子由于其生物相容性和低毒性而广泛的应用于生物医学领域。本文总结了近年来制备各种磁性铁氧化物纳米粒子的方法,比较了它们在粒径、结晶度以及制备条件等方面的优缺点,概括了对其进行表面修饰改性材料的种类,阐述近年来磁性铁氧化物纳米粒子在体内应用中药物运输、磁共振成像、磁热疗方面的进展,并指出当前应用中的主要方向和亟待解决的问题。  相似文献   

19.
This paper addresses the surface modification of TiO2 nanoparticles with n-(6-aminohexyl)aminopropyltrimethoxysilane (AHAPS) using various initial aminosilane concentrations. The main objective of this article is to show experimentally the importance of the physisorption during the grafting process. The distinction between chemisorbed and physisorbed aminosilane molecules on TiO2 is thoroughly analyzed. The surface of bare and modified TiO2 particles has been characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to gain a better understanding of the adsorption mechanism of AHAPS on TiO2. Quantitative information on surface energy of TiO2, in terms of adsorption energy sites and heterogeneity, has been investigated by quasi-equilibrium low-pressure adsorption technique using nitrogen and argon as probe molecules. The FTIR and XPS data are combined to estimate and discuss the chemisorbed and physisorbed contribution. The results demonstrate that both physisorption and chemisorption occurs but they display a different behavior. The physisorbed amounts are much higher than the chemisorbed amounts. This shows that the main part of the adsorbed layer is composed of physisorbed molecules. The physisorbed uptake depends highly on the AHAPS concentration while the chemisorbed amount remains constant. Quasi-equilibrium Ar derivative adsorption isotherms reveal that the AHAPS molecules are mostly located on the {101} and {001} faces of titania and that the two faces display the same reactivity toward AHAPS sorption. Nitrogen adsorption experiments show that the sorption takes place on the three polar surface sites of high energy. The molecules are chemisorbed onto the site displaying the highest energy while they are physisorbed on the two lower energy sites.  相似文献   

20.
Fe3O4 superparamagnetic nanoparticles with various functionalities were synthesized using a chemical co-precipitation method and used to demonstrate their analytical applications for protein separation of protein and metal ion extraction. The chemically inert silica layer coated with tetraethoxysilane (TEOS) protected the Fe3O4 core from a chemical attack and allowed the nanoparticles to be well dispersed in an aqueous solution. Particularly, the beads were resistant to an acidic solution with a pH ≥ 3. The amino (− NH2) groups were covalently bonded to the silica coated Fe3O4, and then the carboxyl (− COOH) groups were functionalized to the nanoparticle surface through the reaction of − NH2 and glutaric anhydride. The synthesized magnetic nanoparticles (MNP) were characterized using FT-IR, FE-TEM, XRD, and SQUID. The presence of functional groups on the nano beads was confirmed using molecular fluorescence spectrometry. For the presence of the amino (− NH2) groups, FITC was tagged and monitored using an excitation laser with a wavelength of 473 nm and a fluorescence emission of 518 nm. Biotin was immobilized on the MNP and the fluorescent of FITC tagged on avidin was monitored to identify the carboxyl (− COOH) group.The proteins of Cytochrome C (12,000 Da), Rnase B (15,000 Da), and Myoglobin (17,000 Da) were separated using the MNP functionalized with the carboxyl (− COOH) group and identified using MALDI-TOF-MS. Amino benzyl EDTA (ethylenediaminetetraacetic acid) was immobilized on the MNP for metal–EDTA complexation to use the synthesized magnetic particles to extract metal ions for environmental and clinical application. Cu, Cd, Co, and Pb ions were extracted from ∼ 10 ng/mL solutions in the batch-type procedure and the extraction efficiency was > 90% at a pH of 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号