首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction.  相似文献   

2.
We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.  相似文献   

3.
In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations.  相似文献   

4.
Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein–protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.  相似文献   

5.
An online two-dimensional (2D) strong cation-exchange (SCX)/reversed-phase (RP) nano-scale liquid chromatography/mass spectrometry (nanoLC/MS) method was developed for improved separation and hydrophobic peptide recovery. Sharper and more symmetric RP peaks were observed with the use of a "band re-focusing method", in which an analytical RP column with more hydrophobicity than the RP trap column was used in the system. To recover hydrophobic peptides still unreleased from the SCX column after a conventional salt step gradient due to hydrophobic interaction, a RP step gradient from 10% to 30% acetonitrile (ACN) was applied to the SCX column in the presence of a high salt concentration following the salt gradient. There were 301 unique hydrophobic E. coli peptides identified from the RP fractions. These peptides, which were 19% of all E. coli peptides identified from a 2D run, would not have been identified without the application of the RP gradient to the SCX column.  相似文献   

6.
We developed a new method consisting of the proteomic reactor coupled with step pH fractionation for the analysis of low-abundance proteins from minute amount of sample. These new reactors were implemented using both SAX and SCX materials. The pH fractions from the SAX reactor provided higher peptide and protein identification than SCX reactor and conventional solution digestion. Interestingly, the physical characteristics (pI, molecular weight, missed cleavage site and grand average hydrophobicity (GRAVY) index, and number of acid and basic amino acid) of the peptides obtained from the SAX and SCX proteomic reactors are drastically different. Furthermore, nearly half of the peptides observed from the pH fractionations from the SAX reactor are of low abundance while only 22% low-abundance proteins are observed with conventional in-solution digestion following 2D LC-MS/MS analysis.  相似文献   

7.
Peak tailing and nonalkaloid coelution usually hinder alkaloid purification. In this study, a 2DLC, strong cation exchange (SCX) coupled with positively charged RP (PGRP) LC, was developed to overcome these problems. Ten compounds including basic and nonbasic compounds were analyzed. Nonbasic compounds, which are coeluted with basic compounds on RP or PGRP columns, were weakly retained on the SCX column. In addition, a symmetrical peak shape (tailing factors <1.2) of basic compounds can be obtained in the current system. Compared to two other 2D systems, the current system provided the highest orthogonality (R2 = 0.045). Furthermore, the SCX coupled with PGRP system was applied for alkaloid purification from a traditional Chinese medicine. Nineteen alkaloids were obtained and one of them was identified as a novel compound. The overall results demonstrate that the proposed system is a powerful tool for alkaloid purification.  相似文献   

8.
Wu F  Sun D  Wang N  Gong Y  Li L 《Analytica chimica acta》2011,698(1-2):36-43
Three surfactant-assisted shotgun methods using acid labile surfactants, sodium-3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)-methoxyl]-1-propanesulfonate (RapiGest) and 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), and sodium dodecyl sulfate (SDS) were investigated for their applicability to membrane proteome analysis. It is shown that RapiGest is a preferred reagent for handling membrane proteomes of Escherichia coli and MCF7 cells for liquid chromatography tandem mass spectrometry (LC MS/MS) analysis of tryptic digests. The RapiGest method allowed identification of more peptides and proteins than the SDS and PPS methods and there was no apparent bias for the type of peptides and proteins identified by the RapiGest and SDS methods, while a slightly higher proportion of hydrophilic peptides and proteins were identified by the PPS method. The performance of the SDS and PPS methods is similar in terms of the numbers of peptides and proteins identified. Since the SDS method required the removal of SDS using a technique such as strong-cation exchange (SCX), we further investigated the effect of SCX on sample loss through analyzing the digest of an enriched E. coli membrane fraction as well as a standard protein, bovine serum albumin (BSA). The results showed that extensive sample loss (as much as 62%) was encountered during the SCX cleaning step. We then applied the RapiGest method in combination with two-dimensional LC MS/MS to characterize the E. coli membrane proteome. In total, 1626 unique proteins (5799 unique peptides) were identified with a peptide false discovery rate of 2.4%. About 60% of the identified proteins with known cellular locations were found to be membrane proteins. Among them, about 75% were integral membrane proteins. This work represents one of the most comprehensive profiles of E. coli membrane proteome generated by a proteomic technique.  相似文献   

9.
LC-MS has become an invaluable technique for trace analysis of polar compounds in aqueous samples of the environment and in water treatment. LC-MS is of particular importance due to the impetus it has provided for research into the occurrence and fate of polar contaminants, and of their even more polar transformation products. Mass spectrometric detection and identification is most widely used in combination with sample preconcentration, chromatographic separation and atmospheric pressure ionization (API). The focus of the first part of this review is directed particularly toward instruments and method development with respect to their applications for detecting emerging contaminants, microorganisms and humic substances (HS). The current status and future perspectives of 1) mass analyzers, 2) ionization techniques to interface liquid chromatography (LC) with mass spectrometry (MS), 3) methods for preconcentration and separation with respect to their application for water analysis are discussed and examples of applications are given. Quadrupole and ion trap mass analyzers with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are already applied in routine analysis. Time-of-flight (TOF) mass spectrometers are of particular interest for accurate mass measurements for identification of unknowns. For non-polar compounds, different ionization approaches have been described, such as atmospheric pressure photoionization (APPI), electrochemistry with ESI, or electron capture ionization with APCI. In sample preconcentration and separation, solid phase extraction (SPE) with different non-selective sorbent materials and HPLC on reversed-phase materials (RP-HPLC) play the dominant role. In addition, various on-line and miniaturized approaches for sample extraction and sample introduction into the MS have been used. Ion chromatography (IC), size-exclusion chromatography (SEC), and capillary electrophoresis (CE) are alternative separation techniques. Furthermore, the issues of compound identification, matrix effects on quantitation, development of mass spectral libraries and the topic of connecting analysis and toxicity bioassays are addressed.  相似文献   

10.
In the present work, a 2-D capillary liquid chromatography method for fractionation and separation of human salivary proteins is demonstrated. Fractionation of proteins according to their pI values was performed in the 1-D employing a strong anion exchange (SAX) column subjected to a wide-range descending pH gradient. Polystyrene-divinylbenzene (PS-DVB) RP columns were used for focusing and subsequent separation of the proteins in the 2-D. The SAX column was presaturated with a high pH buffer (A) consisting of 10 mM amine buffering species, pH 9.0, and elution was performed with a low pH elution buffer (B) having the same buffer composition and concentration as buffer A, but pH 3.5. Isoelectric point fractions eluting from the 1-D column were trapped on PS-DVB trap columns prior to back-flushed elution onto the PS-DVB analytical column for separation of the proteins. The 1-D fraction eluting at pH 9.0-8.7 was chosen for further analysis. After separation on the RP analytical column, nine RP protein fractions were collected and tryptic digested for subsequent analyses by MALDI TOF MS and column switching capillary LC coupled to ESI TOF MS and ESI QTOF MS. Eight proteins and two peptides were identified in the pH 9.0-8.7 fraction using peptide mass fingerprinting and uninterpreted MS/MS data.  相似文献   

11.
This paper describes the surplus value of a quadrupole-orthogonal acceleration TOF mass spectrometer, coupled to a liquid chromatographic separation system, for the unequivocal identification and structural elucidation of an unknown compound in the field of designer drugs. In a patient sample set (blood, tissues, vitreous humor, etc.), analyzed with a dedicated liquid chromatographic-fluorescence detection method for the determination of methylenedioxy amphetamine, methylenedioxy methamphetamine, and methylenedioxy ethylamphetamine (MDEA), a "strange" inexplicable peak appeared at a retention time not corresponding to any of our reference materials. Based on the identical excitation and emission wavelengths in detection, and a retention behavior comparable to MDEA, it was assumed that this unknown compound was an isomer of the recreational drug MDEA. With a simple and straightforward methodological crossover between LC fluorescence detection and LC-MS/MS, additional information for structural elucidation was easily obtained. Chromatographic separation was achieved on a Hypersil BDS C18 column (fluorescence detection part) and on a Hypersil BDS phenyl column (mass spectrometric detection part). MS showed that the unknown compound's molecular mass was identical to that of MDEA, and, in addition, its fragmentation pattern too proved quite similar to that of MDEA. A thorough literature overview and study of the fragmentation pattern by means of the MS/MS spectrum led to an evidence-based hypothesis of 3,4-methylenedioxy N,N-dimethylamphetamine (MDDM) being the unknown compound. To confirm this hypothesis, MDDM was synthesized and its presence in our biological sample was finally demonstrated by co-injection with alternatively synthesized MDDM and MDEA. This application shows the synergism between LC and MS in the elucidation of unknown compounds, nevertheless emphasizing the essence of chromatographic separation when dealing with isomers.  相似文献   

12.
In this study, methodology was developed for on-line and miniaturized enzymatic digestion with liquid chromatographic (LC) separation and mass spectrometric (MS) detection. A packed capillary LC-MS system was combined with on-line trypsin cleavage of a model protein, lactate dehydrogenase, to provide an efficient system for peptide mapping. The protein was injected onto an enzymatic capillary reactor and the resulting peptides were efficiently trapped on a capillary trapping column. Different trapping columns were evaluated to achieve a high binding capacity for the peptides generated in the enzyme reactor. The peptides were further eluted from the pre-column and separated on an analytical capillary column by a buffer more suitable for the following an electrospray ionisation (ESI) MS process. An important aspect of the on-line approach was the desalting of peptides performed in the trapping column to avoid detrimental signal suppression in the ESI process. The developed on-line system was finally compared to a classical digestion in solution, with reference to peptide sequence coverage and sensitivity. It was shown that the on-line system gave more than 100% higher peptide sequence coverage than traditional digestion methods.  相似文献   

13.
Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis.  相似文献   

14.
This paper describes a method--using a combination of LC-MS/MS of selected bacteria-specific peptides and database search--for determining the species of bacteria present in a mixture. We identified the proteotypic peptides that were associated with specific bacteria by searching protein databases for the LC-MS/MS data. The retention time windows for specific peptide markers were used as an extra constraint so that the peptide markers of many bacterial species could be analyzed in a single LC-selective proteotypic-peptide analysis (SPA). We performed LC-MS/MS analyses on the proteolytic digest of cell extracts and monitored only the selected marker peptide ions at given elution time windows. The corresponding bacterial species could be characterized when the selected peptides that eluted at expected elution windows were identified correctly from the database. We managed to identify up to eight bacterial species simultaneously during a single LC-MS/MS analysis, as well as bacteria mixed in various abundances. Two marker ions having similar values of m/z, but obtained from two different bacterial samples, which would otherwise be selected as precursors within mass tolerance and would complicate the MS/MS data, were time-resolved using LC and then used to correctly identify their bacterial sources. The coupling of selective MS/MS monitoring with separation methods, such as LC, provides a highly selective and accurate analytical method for characterizing complex mixtures of bacterial species.  相似文献   

15.
A microbore electrospray (ESI) injection system has been adapted to our 9.4-tesla ESI FT-ICR mass spectrometer, greatly enhancing the stability and sensitivity of the system. Spray was generated from micro-ESI needles made from sharply tapered, polished fused silica capillaries of 25 to 50 µm inner diameter. Micro-ESI permits low-level sample analysis by constant infusion at sub-µL/min flow rate over a wide range of solvent conditions in both positive- and negative-ion mode. The system is flexible and allows rapid conversion to allow routine LC/MS analysis on low-level mixtures presented in biological media. LC/MS analyses were accomplished by replacing micro-ESI needles with capillaries packed with reverse phase retention media to permit analyte concentration and purification prior to analysis (micro-ESI/LC). A unique nano-flow LC pumping system was developed, capable of producing a true unsplit solvent gradient at flow rates below 1 µL/min. The micro-ESI/LC FT-ICR system produces mass spectra from a mixture of three neuroactive peptides at a concentration of 500 amol/µL (5 fmol each total loaded) in biological salts with baseline separation, signal-to-noise ratio of >10:1 and mass resolving power >5000. These results represent a reduction in detection limit by a factor of ~2 × 106 over the best previously published LC/FT-ICR MS data.  相似文献   

16.
Hyung SW  Kim MS  Mun DG  Lee H  Lee SW 《The Analyst》2011,136(10):2100-2105
The microcapillary liquid chromatography (μLC)/tandem mass spectrometry (MS/MS) system has become a prevailing analytical platform in proteomics. Typical proteomic studies aimed at proteome-wide identification of peptides and proteins rely heavily on producing an accurate and reproducible solvent-composition gradient throughout microcapillary separation columns to improve LC separation. With the recent advent of targeted proteomic approaches utilizing the LC retention time as a physicochemical parameter for peptides, high reproducibility of LC separation additionally becomes an important factor. In this study, column temperature elevation is utilized to improve reproducibility and separation efficiency of the μLC-MS/MS system. The simple incorporation of a semi-rigid gas line heater allowed precise control of the temperature of microcapillary columns longer than 70 cm, up to 60 °C. Tryptic enolase peptides were used as a standard sample to evaluate the effect of the controlled temperature elevation on the peptide separation efficiency and reproducibility. In addition to the increased reproducibility in peptide elution time due to the controlled column temperature, the temperature elevation resulted in a decrease in the column operation pressure, which, in turn, allowed a higher solvent flow-rate to be employed using the same LC pumps, leading to further improvements in the performance of μLC systems.  相似文献   

17.
The tandem use of hydrophilic interaction LC columns with RP columns in series configuration has resulted in the retention of both polar and nonpolar components in complex biological samples (mouse serum) in a single analysis. This approach successfully coupled various columns with orthogonal separation characteristics, employed a single solvent gradient program compatible with the two columns and used ESI coupled to a TOF mass spectrometer for detection. Ion suppression, a common problem in ESI, was virtually eliminated for components eluting with apparent capacity factors >0.7. Retention time reproducibility with the tandem columns performed over three days with over 100 injections was comparable to that observed for single columns alone. This method was applied to the analysis of a pooled mouse serum sample and afforded highly reproducible data for up to 3000 mass spectral features. This approach was implemented with a conventional LC–MS system and should find broad applicability in the comprehensive analysis of complex mixtures containing a wide range of compound polarities.  相似文献   

18.
Capillary zone electrophoresis (CZE)–tandem mass spectrometry (MS/MS) has recently attracted attention as a tool for shotgun proteomics. However, its performance for this analysis has so far fallen far below that of reversed‐phase liquid chromatography (RPLC)–MS/MS. The use of a CZE method with a wide separation window (up to 90 min) and high peak capacity (ca. 300) is reported. This method was coupled to an Orbitrap Fusion mass spectrometer through an electrokinetically pumped sheath‐flow interface for the analysis of complex proteome digests. Single‐shot CZE–MS/MS lead to the identification of over 10 000 peptides and 2100 proteins from a HeLa cell proteome digest in approximately 100 min. This performance is nearly an order of magnitude better than earlier CZE studies and is within a factor of two to four of the state‐of‐the‐art nano ultrahigh‐pressure LC system.  相似文献   

19.
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.  相似文献   

20.
The gain in separation efficiency for protein digests using long monolithic columns has been evaluated for a LC‐MS system with capillary monolithic columns of different lengths (150 and 750 mm). A mixture of BSA, α‐casein and β‐casein tryptic digests was used as a test sample. Peak capacity and productivity (peak capacity per unit time) were determined from base peak chromatograms and MS/MS data were used for protein identification by MASCOT database searching. Peak capacity and protein identification scores were higher for the long column. Analyses with similar gradient slope for the two columns produced ratios of the peak capacities that were slightly higher than the expected value of the square root of the column length ratio. Peak capacity ratios varied from 2.7 to 4.0 for four different gradient slopes, while protein identification scores were 2–4 times higher for the long column. Similar values were obtained for the productivity of both columns and the highest productivity was obtained at gradient times of 45 and 75 min for the short and long column, respectively. The use of long monolithic columns improves peptide separation and increases reliability of protein identification for complex digests, especially if longer gradients are chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号