首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in-depth analysis for proton exchange membranes to examine the effects of acid concentration and effective proton mobility upon proton conductivity as well as their relationship to water content was carried out on two main-chain, statistically sulfonated polymers at 25 degrees C. These polymer systems consisted of poly(ethylenetetrafluoroethylene-graft-polystyrenesulfonic acid) (1) and sulfonated trifluorostyrene (BAM) membrane (2). Nafion (3) was used for comparison. Water content (as represented by Xv, the water volume fraction, where Xv = volume of water in hydrated PEM / volume of hydrated PEM), for each sample was varied by adjusting the relative humidity (RH) of the membrane environment from 50% to 98%. It was found that, at low RH (RH < 70%), the major factor determining proton conductivity is proton mobility. In order to remove the differences in acid strength for the membranes, proton mobility values at infinite dilution (Xv = 1.0) and 25 degrees C were calculated and found to be 2.6 +/- 0.2 x 10-3 (average of 1a-c), 1.6 +/- 0.3 x 10-3 (average of 2a-e), and 2.32 +/- 0.01 x 10-3 cm2 s-1 V-1 (3). These were then compared to the theoretical value for the mobility of a free proton at infinite dilution and to previously reported data. Possible differences in tortuosity and the juxtaposition of acid groups are proposed in order to account for the significant deviations of all samples from the theoretical value.  相似文献   

2.
Poly(arylene ether sulfone)-based ionomers containing sulfofluorenyl groups have been synthesized for applications to polymer electrolyte membrane fuel cells (PEMFCs). In order to achieve high proton conductivity and chemical, mechanical, and dimensional stability, the molecular structure of the ionomers has been optimized. Tough, flexible, and transparent membranes were obtained from a series of modified ionomers containing methyl groups with the ion-exchange capacity (IEC) ranging from 1.32 to 3.26 meq/g. Isopropylidene tetramethylbiphenylene moieties were more effective than the methyl-substituted fluorenyl groups in giving a high-IEC ionomer membrane with substantial stability to hydrolysis and oxidation. Dimensional stability was significantly improved for the methyl-substituted ionomer membranes compared to that of the non-methylated ones. This new ionomer membrane showed comparable proton conductivity to that of the perfluorinated ionomer membrane (Nafion 112) under a wide range of conditions (80-120 degrees C and 20-93% relative humidity (RH)). The highest proton conductivity of 0.3 S/cm was obtained at 80 degrees C and 93% RH. Although there is a decline of proton conductivity with time, after 10 000 h the proton conductivities were still at acceptable levels for fuel cell operation. The membranes retained their strength, flexibility, and high molecular weight after 10 000 h. Microscopic analyses revealed well-connected ionic clusters for the high-IEC membrane. A fuel cell operated using the polyether ionomer membrane showed better performance than that of Nafion at a low humidity of 20% RH and high temperature of 90 degrees C. Unlike the other hydrocarbon ionomers, the present membrane showed a lower resistance than expected from its conductivity, indicating superior water-holding capability at high temperature and low humidity.  相似文献   

3.
This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.  相似文献   

4.
To produce a proton conductive and durable polymer electrolyte membrane for fuel cell applications, a series of sulfonated polyimide ionomers containing aliphatic groups both in the main and in the side chains have been synthesized. The title polyimide ionomers 1 with the ion exchange capacity of 1.78-2.33 mequiv/g were obtained by a typical polycondensation reaction as transparent, ductile, and flexible membranes. The proton conductivity of 1 was slightly lower than that of the perfluorinated ionomer (Nafion) below 100 degrees C, but comparable at higher temperature and 100% RH. The highest conductivity of 0.18 S cm(-)(1) was obtained for 1 at 140 degrees C. Ionomer 1 with high IEC and branched chemical structure exhibited improved proton conducting behavior without sacrificing membrane stability. Microscopic analyses revealed that smaller (<5 nm) and well-dispersed hydrophilic domains contribute to better proton conducting properties. Hydrogen and oxygen permeability of 1 was 1-2 orders of magnitude lower than that of Nafion under both dry and wet conditions. Fuel cell was fabricated with 1 membrane and operated at 80 degrees C and 0.2 A/cm(2) supplying H(2) and air both at 60% or 90% RH. Ionomer 1 membrane showed comparable performance to Nafion and was durable for 5000 h without distinct degradation.  相似文献   

5.
A novel method has been proposed to fabricate Nafion/poly(tetrafluoroethylene) (PTFE) composite proton exchange membranes (PEMs) with high durability and high chemical stability. In this method, Nafion ionomers were first converted into the Na(+) form, they were then fixed on PTFE frame micropores, and then the polymer was heat-treated at 270 degrees C. The chemical stability tests of the novel composite PEMs by Fenton's reagent demonstrate the significant improvement in the chemical durability. The Nafion/PTFE composite PEMs also show an excellent physical stability, and its RH-generated stress is 0.6 MPa at 25 RH% and 90 degrees C, substantially smaller than 3.1 MPa for pure Nafion membrane under the same conditions. In an in situ accelerating RH cyclic experiment, the degradation in the open circuit voltage (OCV) of the fuel cell assembled with the novel composite PEMs is 3.3 mV/h, significantly lower than 13.2 mV/h for a fuel cell assembled with the commercial Nafion membrane.  相似文献   

6.
Fine particle superacidic sulfated zirconia (SO42−/ZrO2, S-ZrO2) was synthesized by ameliorated method, and composite membranes with different S-ZrO2 contents were prepared by a recasting procedure from a suspension of S-ZrO2 powder and Nafion solution. The physico-chemical properties of the membranes were studied by ion exchange capacity (IEC) and liquid water uptake measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, thermogravimetry–mass spectrometry (TG–MS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the IEC of composite membrane increased with the content of S-ZrO2, S-ZrO2 was compatible with the Nafion matrix, the incorporation of the S-ZrO2 could increase the crystallinity and also improve the initial degradation temperature of the composite membrane. The performance of single cell was the best when the S-ZrO2 content was 15 wt.%, and achieved 1.35 W/cm2 at 80 °C and 0.99 W/cm2 at 120 °C based on H2/O2 and at a pressure of 2 atm, the performance of the single cell with optimized S-ZrO2 was far more than that of the Nafion at the same condition (e.g. 1.28 W/cm2 at 80 °C, 0.75 W/cm2 at 120 °C). The 15 wt.% S-ZrO2/Nafion composite membrane showed lower fuel cell internal resistance than Nafion membranes at high temperature and low relative humidity (RH).  相似文献   

7.
A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are characterized by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), N(2) adsorption/desorption isotherms, thermogravimetric analysis (TGA), water uptake and four-probe conductivity. The results show that the mesoporous structure of silica hosts can be altered by the hydrothermal temperature. Conductivity measurements indicate that meso-silica host with pore diameter of 5.0 nm has the highest proton conductivity of 0.11 S cm(-1) at 80 °C and 100% relative humidity (RH) with an activation energy of ~14 kJ mol(-1) and better stability as compared to that with large mesopores. The proton conductivity and performance of HPW-meso-silica nanocomposites also increase with the RH, but it is far less sensitive to RH changes as compared to conventional perfluorosulfonic acid (PFSA) polymers such as Nafion. The maximum power density of the cell with HPW-meso-silcia nanocomposite membranes is 221 mW cm(-2) at 80 °C and 100% RH and decreases to 171 mW cm(-2) when RH is reduced to 20%, a 20% decrease in power output. In the case of a cell with Nafion 115 membranes, the decrease in power density is 95% under identical test conditions. The results demonstrate that the HPW-meso-silica nanocomposite has an exceptionally high water retention capability and is a promising proton exchange membrane material for fuel cells operating at reduced humidity and elevated temperatures.  相似文献   

8.
Random and block sulfonated poly(meta‐phenylene isopthalamide)s as proton exchange membranes were synthesized through the Higashi‐Yamazaki phosphorylation method. Polymers with different degrees of sulfonation from 40 to 100 mol percent were prepared by adjusting the molar feed ratio of 5‐sulfoisophthalic acid sodium salt (SIPA) and isophthalic acid (IPA) in the reaction with meta‐phenylene diamine. Creasable polymer films were obtained by casting DMSO polymer solutions and the membrane films could be exchanged to the proton form in strong acid. 1H NMR spectroscopy and titration confirmed the degree of sulfonation. Thermogravimetric analysis demonstrated good thermal stabilities with 5% weight loss greater than 380 °C. The copolymers with low degrees of sulfonation (DS = 40 mol %) exhibited low water uptake (water uptake < 17 wt %) at room temperature. A segmented multiblock copolymer prepared by preforming a sulfonated block showed lower water uptake at high temperatures than the random polymer with the same DS of 40 mol % and displayed stability in water up to 80 °C. Both random and block copolymers showed higher proton conductivities at high temperature than that of Nafion‐117 under 95% relative humidity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2582–2592  相似文献   

9.
We have used Fourier transform infrared spectroscopy to study thin water films on a hydrophilic silicon surface in the temperature range from 20 to -20 degrees C. Throughout that range, the spectra of the water adjacent to the silicon surface are consistent with that of bulk water near 25 degrees C. Thicker films (>1 microm) freeze at -11+/-1 degrees C. We reconcile the apparent paradox of a thin film of water which is quite liquidlike at a temperature where freezing of thicker films occurs by hypothesizing that the nucleation event in the thicker film is triggered by a critical ice embryo which forms at some small distance from the silicon surface, as opposed to in direct contact with it.  相似文献   

10.
Nafion/sulfonated poly(phenylmethyl silsesquioxane) (sPPSQ) composite membranes are fabricated using homogeneous dispersive mixing and a solvent casting method for direct dimethyl ether fuel cell (DDMEFC) applications operated above 100 °C. The inorganic conducting filler, sPPSQ significantly affects the characteristics in the nanocomposite membranes by functionalization with an organic sulfonic acid to PPSQ. Moreover, sPPSQ content plays an important role in membrane properties such as microstructure, proton conductivity, fuel crossover, and single cell performance test. With increasing sPPSQ content in the nanocomposite membrane, the proton conductivity increased and fuel crossover decreased. However, in a higher temperature range above 110 °C, Nafion/sPPSQ 5 wt.% composite membrane has the highest proton conductivity. Also, the DME permeability for the composite membrane with higher sPPSQ content increased sharply. The excessive sPPSQ content caused a large aggregation of inorganic fillers, leading to the deterioration of membrane properties. In this study, the optimal sPPSQ content for maximizing the DDMEFC performance was 5 wt.%. Our nanocomposite membranes demonstrated proton conductivities as high as 1.57 × 10−1 S/cm at 120 °C, which is higher than that of Nafion. The cell performances were compared to Nafion/sPPSQ composite membrane with Nafion 115, and the composite membrane with sPPSQ yielded better cell performance than Nafion 115 at temperatures ranging from 100 to 120 °C and at pressures from 1 to 2 bar.  相似文献   

11.
高效液相色谱法测定南瓜粉中的4-氨基丁酸   总被引:15,自引:0,他引:15  
刘惠文 《色谱》2001,19(6):532-533
 采用强阳离子交换柱分离 ,pH梯度洗脱 ,邻苯二甲醛 (OPA)柱后衍生 ,荧光λex=338nm ,λem=42 5nm检测的高效液相色谱法测定了南瓜粉中的 4 氨基丁酸 (GABA)。若以GABA的峰高Y(μV)对进样质量X(μg)进行线性回归 ,则线性方程为Y =45 6 6X +1396 ,r =0 9998;GABA的平均回收率 (n =3)为 99%。方法稳定、快速、灵敏、准确。  相似文献   

12.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

13.
A new class of proton exchange composite membranes made by incorporating phosphosilicate gels into SPPO matrix was prepared and characterized. The thermal stability was evaluated by TGA and DSC, and the amorphous structure information was provided from XRD. The experimental results showed that the composite membranes have good stability to oxidation by Fenton's reagent test, and the membrane dimension is hardly changed, even at high temperature. The hydration number values of the persulfonic acid group of composite membranes were lower than that of Nafion 112 at room temperature, but the water uptake of composite membranes at 80°C was higher than that of Nafion 112. With increasing relative humidity and doping amount, the conductivity of the composite membranes increased. Moreover, the conductivities of water-equilibrated composite membranes were higher than that of Nafion 112 (0.0871 S/cm) at room temperature, and the highest conductivity for the composite membrane was 0.216 S/cm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Length-dependent helical propensities w(Ala)(n,T) at T = 10, 25, and 60 degrees C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLys(m)Inp2(t)Leu-Ala(n)(t)LeuInp2Lys(m)NH2, n = 15, 19, and 25, m = 5, in water. Van't Hoff analysis of w(Ala)(n,T) show that alpha-helix formation is primarily enthalpy-driven. For series 2 peptides Ac-Trp Lys5Inp2(t)Leu-(beta)AspHel-Ala(n)-beta-(t)LeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Ala(n) cores, protection factor-derived fractional helicities FH are assigned in the range 10-30 degrees C in water and used to calibrate temperature-dependent CD ellipticities [theta](lambda,H,n,T). These are applied to CD data for series 1 peptides, 12 < or = n < or = 45, to confirm the w(Ala)(n,T) assignments at T = 25 and 60 degrees C. The [theta](lambda,H,n,T) are temperature dependent within the wavelength region, 222 +/- 12 nm, and yield a temperature correction for calculation of FH from experimental values of [theta](222,n,T,Exp).  相似文献   

15.
A simple, accurate and precise procedure for the quantitation of itazigrel (a potent lipophilic inhibitor of collagen and arachidonic acid-induced aggregation being studied for its effects on peripheral vascular disease) from granulated rodent diet is presented. The drug was extracted from rodent diet using methanol + water (80:20) following dissolution of the diet in water. Samples of the supernatant were injected into the HPLC and the eluent was monitored with a fluorescent detector (lambda ex = 320 and lambda em = 430) to achieve analytical specificity. Interday coefficients of variation of the calibration curve slope were +/- 6% on standards between 0 and 1000 micrograms/g. Potency and homogeneity of the drug spiked diet prepared over a 1 year interval at 70, 200 and 600 micrograms/g was 99.3 +/- 2.5%, 100 +/- 1.8%, and 101 +/- 1.9% of label, respectively. Samples prepared for chromatography were stable for 24 h at 20 degrees C, and drug in diet was stable for 102 days when protected from light and stored at 20 degrees C.  相似文献   

16.
We prepared a TiO2-P2O5 self-ordered, crystalline glass, mesoporous nanocomposite (CGMN) with water-holding capacity at an intermediate temperature region (130-200 degrees C). This TiO2-P2O5 CGMN showed the high proton conductivity of 2 x 10-2 S cm-1 at 160 degrees C under fully saturated humidification conditions (100% RH). Additionally, these conductivities were stable at intermediate temperature conditions. The TiO2-P2O5 CGMN may have a potential not only for the fuel cell electrolytes operated at intermediate temperature conditions but also for electrochemical devices, including electrochromic displays, chemical sensors, lithium rechargeable batteries, and others.  相似文献   

17.
Proton-exchange membranes, for possible use in H2/O2 and direct methanol fuel cells have been fabricated from poly[bis(3-methylphenoxy)phosphazene] by first sulfonating the base polymer with SO3 and then solution-casting thin films. The ion-exchange capacity of the membrane was 1.4 mmol/g. Polymer crosslinking was carried out by dissolving benzophenone photoinitiator in the membrane casting solution and then exposing the resulting films after solvent evaporation to UV light. The crosslinked membranes look particularly promising for possible proton exchange membrane (PEM) fuel cell applications. A sulfonated and crosslinked polyphosphazene membrane swelled less than Nafion 117 in both water and methanol. Proton conductivities in crosslinked and non-crosslinked 200 μm thick water-equilibrated polyphosphazene films at temperatures between 25°C and 65°C were essentially the same and only 30% lower than those for Nafion 117. Additionally, water and methanol diffusivities in the crosslinked polyphosphazene membrane were very low (≤1.2×10−7 cm2/s). Sulfonated/crosslinked polyphosphazene films showed no signs of mechanical failure (softening) up to 173°C and a pressure of 800 kPa and did not degrade chemically when soaked in a hot hydrogen peroxide/ferrous ion solution.  相似文献   

18.
The effect of exchanged ions on the thermal stability of Nafion N117CS membranes was investigated by X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and ion exchange capacity determinations. The ion exchange of alkaline metal ions was effective in improving the thermal stability of the Nafion N117CS membrane. Findings reveal that when Nafion was exchanged for cations with a larger ionic radius, the membrane attained superior thermal stability. On the other hand, we confirmed that the Na-exchange Nafion N117CS membrane possessed a distinctive degree of thermal stability among the alkaline ion-exchange Nafions, although the order of ionic radii is K > Na > Li. Thermal stability improved the most when the Nafion membrane was exchanged for alkaline ions, followed by divalent ions, then trivalent ions. As for the Nafion membrane when it was exchanged for divalent ions or trivalent ions, Nafion following the ion exchange had a thermal stability proportional to an increase in the ionic radius of the cation. This stability may be explained by the reduction of water content and a greater interaction between the sulfonate groups and the cations with larger ionic radii. Since the Al cations acted as a Lewis acid center, the decomposition of the ether bonds of the perfluoroalkylether pendant-chains of the Nafion membrane was observed for the Nafion N117CS membrane that had been exchanged for Al ions. The activation of molecular mobility in Nafion was observed between the decomposition stages of the loss of water and the loss of sulfonic groups. The temperature of activation of cation-exchange Nafion became much higher than that of Nafion in an acid form.  相似文献   

19.
Electrorotation (ER) spectra of human red blood cells (HRBCs) have been recorded in the frequency range from 10 kHz to 250 MHz in a 4-electrode microchip chamber. The cells were suspended at conductivities in the range from 0.02 to 3.00 S/m (corresponding to an ionic strength range from 1.6 to 343 mM) at temperatures between 10 degrees C and 35 degrees C. Generally, the characteristic frequencies as well as the rotation speeds of the first (membrane-dispersion) and second ER peaks increased with temperature. The rotation speed increase was largely correlated to the temperature dependence of the medium viscosity. Standard temperature dependencies were assumed for the conductivities and permittivities of cytoplasm, membrane, and external solution to explain the frequency shifts, starting from the cell parameters of Gimsa et al. [Gimsa et al., 1996, Biophys. J. 71: 495-506.]. The membrane capacitance was assumed to be temperature independent, based on the permittivity of alkyl-chains. Under these assumptions, the spectra could be well fitted only in a narrow temperature range around 20 degrees C. The temperature dependence of the first characteristic frequency was much stronger than predicted. In addition, around 15 degrees C, an anomalously high rotation speed was observed for the first peak at low external conductivities. Interestingly, this finding corresponds to the change in the chloride transport rate described by Brahm [Brahm, 1977, J. Gen. Physiol. 70: 283-306.].  相似文献   

20.
Measurements of the mechanical and electrical properties of Nafion and Nafion/titania composite membranes in constrained environments are reported. The elastic and plastic deformation of Nafion‐based materials decreases with both the temperature and water content. Nafion/titania composites have slightly higher elastic moduli. Thecomposite membranes exhibit less strain hardening than Nafion. Composite membranes also show a reduction in the long‐time creep of ~40% in comparison with Nafion. Water uptake is faster in Nafion membranes recast from solution in comparison with extruded Nafion. The addition of 3–20 wt % titania particles has minimal effect on the rate of water uptake. Water sorption by Nafion membranes generates a swelling pressure of ~0.55 MPa in 125‐μm membranes. The resistivity of Nafion increases when the membrane is placed under a load. At 23 °C and 100% relative humidity, the resistivity of Nafion increases by ~15% under an applied stress of 7.5 MPa. There is a substantial hysteresis in the membrane resistivity as a function of the applied stress depending on whether the pressure is increasing or decreasing. The results demonstrate how the dynamics of water uptake and loss from membranes are dependent on physical constraints, and these constraints can impact fuel cell performance. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2327–2345, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号