首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Electrochemical reduction of the dinuclear [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]2+ ions (M = Rh, Ir; L = 2,5-bis(1-phenyliminoethyl)pyrazine (bpip) and 2,5-bis[1-(2,6-dimethylphenyl)iminoethyl]pyrazine (bxip)) proceeds via the paramagnetic intermediates [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]+ (L = bpip) or [(eta 5-C5Me5)M(mu-L)MCl(eta 5-C5Me5)]2+ (L = bxip) and [(eta 5-C5Me5)M(mu-L)M(eta 5-C5Me5)]+. Whereas the first is clearly a radical species with a small g anisotropy, the chloride-free cations are distinguished by structured intervalence charge transfer (IVCT) bands in the near-infrared region and by rhombic electron paramagnetic resonance features between g = 1.9 and g = 2.3, which suggests considerable metal participation at the singly occupied MO. Alternatives for the d configuration assignment and for the role of the bisbidentate-conjugated bridging ligands will be discussed. The main difference between bpip and bxip systems is the destabilization of the chloride-containing forms through the bxip ligand for reasons of steric interference.  相似文献   

4.
The reaction of decamethylytterbocene [(η5‐C5Me5)2Yb(THF)2] with SO2 at low temperature gave two new compounds, namely, the YbIII dithionite/sulfinate complex [{(η5‐C5Me5)2Yb(μ3,1κ2O1,3,2κ3O2,2′,4‐S2O4)}2{(η5‐C5Me5)Yb(μ,1κO,2κO′‐C5Me5SO2)}2] ( 1 ) and the YbIII dithionite complex [{(η5‐C5Me5)2Yb}2(μ,1κ2O1,3,2κ2O2,4‐S2O4)] ( 2 ). After extraction of 1 , the mixture was heated to give the dinuclear tetrasulfinate complex [{(η5‐C5Me5)Yb}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 a ). In contrast, from the reaction of [(η5‐C5Me5)2Eu(THF)2] with SO2 only the tetrasulfinate complex [{(η5‐C5Me5)Eu}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 b ) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2O42?; and 2) nucleophilic attack of one metallocene C5Me5 ligand on the sulfur atom of SO2. The compounds presented are the first dithionite and sulfinate complexes of the f‐elements.  相似文献   

5.
Reactions of lanthanoid trichlorides with sodium cyclopentylcyclopentadienyl in THFafford bis(cyclopentylcyclopentadienyl) lanthanoid chloride complexes (C_5H_9C_5H_4)_2LnCl(THF)_n (Ln=Nd, Sm, n=1; Ln= Er, Yb, n= 0). The compound [CP'_2SmCl(THF)]_2 (2) (Cp' =cyclopentylcy-clopentadienyl) crystallizes from mixed solvent of hexane and THF in monoclinic space group P_2_1/cwith a = 11.583 (3), b = 23.019(6), c = 8.227 (2), β= 90.26 (2)°, V= 2194 (1)~3, D_c= 1.59 g/cm~3.μ= 28.6 cm~(-1), F(000) = 1060, Z= 2 (dimers). Its crystal molecule is a dimer with a crystallographicsymmetry center. The central metal atom Sm is coordinated to two Cp' rings, two bridging chlorineatoms and one THF forming a distorted trigonal bipyramid. The crystal of [Cp'_2ErCl]_2 (3) belongs tothe triclinic space group P with a = 11.264 (2), b= 13.296(5), c = 14.296(6), a = 96.99 (3), β=112.47(2), γ= 102.78(2)°, V= 1865(1)~3, D_c= 1.67 g /cm~3, μ= 48.0 cm~(-1), F(000) = 924, Z = 2 (dimers).The molecule is a dimer consisting of two Cp'_2 ErCl species bridged by two Cl atoms. The centralmetal atom Er is coordinated to two Cp' rings and two bridging chlorine atoms forming a pseudo-tetrahedron. All these complexes are soluble in THF, DME, Et_2O, toluene and hexane.  相似文献   

6.
The origin of the hydrogenation of the dinitrogen ligand in [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) has been investigated by a combined computational and experimental study. Density functional theory calculations on the zirconocene dinitrogen complex demonstrate significant imido character in the zirconium nitrogen bonds, arising from effective pi-back-bonding from the low-valent zirconium and the side-on bound N2 ligand. The twisted ground-state structure of the N2 complex is a key requirement for nitrogen hydrogenation, as calculations on the model complex [(eta5-C5H5)2Zr]2(mu2,eta2,eta2-N2) reveal reduced overlap as the dihedral angle between the zirconocene wedges approaches 0 degrees . Experimentally, isotopic labeling studies on the microscopic reverse are consistent with a 1,2-addition mechanism for nitrogen hydrogenation.  相似文献   

7.
8.
The reactivities of (C5Me5)3U and (C5Me4H)3U were compared using both common (THF) and nontraditional (N2) ligands for f elements. THF coordinates the less-crowded (C5Me4H)3U to form (C5Me4H)3U(THF) while ring opening occurs with sterically crowded (C5Me5)3U. N2 at 80 psi reacts with (C5Me5)3U to form (C5Me5)3U(eta1-N2) [U-N(N2) = 2.492(10) A, nu(N2) = 2207 cm-1, and cnt-U-N2 = 90 degrees ], whereas only (C5Me4H)3U was isolated under 80 psi of N2.  相似文献   

9.
The loosely ligated [BPh4]1- ion in [(C5Me5)2Ln][(mu-Ph)2BPh2] can be readily displaced by alkyllithium or potassium reagents to provide access to unsolvated alkyl lanthanide metallocenes, [(C5Me5)2LnR]x, which display high C-H activation reactivity. [(C5Me5)2SmMe]3, [(C5Me5)2LuMe]2, [(C5Me5)2LaMe]x, (C5Me5)2Sm(CH2Ph), [(C5Me5)2Sm(CH2SiMe3)]x, and [(C5Me5)2SmPh]2 were prepared in this way. [(C5Me5)2SmMe]3 metalates toluene, benzene, SiMe4, and (C5Me5)1- ligands to make (C5Me5)2Sm(CH2Ph), [(C5Me5)2SmPh]2, [(C5Me5)2Sm(CH2SiMe3)]x, and (C5Me5)6Sm4[C5Me3(CH2)2]2, respectively. These C-H activation reactions can be done using an in situ synthesis of [(C5Me5)2LnMe]x such that the [(C5Me5)2Ln][(mu-Ph)2BPh2]/LiMe/RH combination provides a facile route to a variety of unsolvated [(C5Me5)2LnR]x products.  相似文献   

10.
Reaction of (eta5-Cp)(CO)2M=P=C(SiMe3)2 4a (M = Mo) and 4b (M = W) with (eta5-Cp*)(CO)2Fe-As=C(NMe2)2 5 affords the eta3-1-arsa-2-phosphaallyl complexes [(eta5-Cp*)(CO)2Fe-AsPC(SiMe3)2]M(CO)2(eta5-Cp) 6a and 6b, the molecular structures of which were determined by X-ray analyses.  相似文献   

11.
To compare the ligand-based reduction chemistry of (EPh)(-) ligands in a metallocene environment to the sterically induced reduction chemistry of the (C(5)Me(5))(-) ligands in (C(5)Me(5))(3)Sm, (C(5)Me(5))(2)Sm(EPh) (E = S, Se, Te) complexes were synthesized and treated with substrates reduced by (C(5)Me(5))(3)Sm: cyclooctatetraene; azobenzene; phenazine. Reactions of PhEEPh with (C(5)Me(5))(2)Sm(THF)(2) and (C(5)Me(5))(2)Sm produced THF-solvated monometallic complexes, (C(5)Me(5))(2)Sm(EPh)(THF), and their unsolvated dimeric analogues, [(C(5)Me(5))(2)Sm(mu-EPh)](2), respectively. Both sets of the paramagnetic benzene chalcogenolate complexes were definitively identified by X-crystallography and form homologous series. Only the (TePh)(-) complexes show reduction reactivity and only upon heating to 65 degrees C.  相似文献   

12.
A comparative synthetic, structural, and thermochemical study on a series of chelate complexes containing the fragment (eta 5-C5Me5)Ir [(eta 5-C5Me5)Ir(TsNCH2CH2NTs) (1), (eta 5-C5Me5)Ir(TsNCH2CO2) (2), (eta 5-C5Me5)Ir(CO2CO2) (3)] was performed to clarify the roles of carboxylato and sulfonamido ligands. Whereas 1 and 2 are monomeric in solution and in the solid state, 3 appears to exist as an oligomer or polymer, (3)n, which can be broken up by addition of a ligand L such as a phosphine, CO, or 2-methoxypyridine to form (eta 5-C5Me5)Ir(L)(CO2CO2) (6). The synthesis of (3)n from [(eta 5-C5Me5)IrCl(mu-Cl)]2 required the use of silver oxalate in CH3CN, but if other solvents were used, the bridging oxalato complex (eta 5-C5Me5)IrCl(mu-eta 2-eta 2-C2O4)ClIr(eta 5-C5Me5) (7) was obtained and identified by X-ray diffraction. Enthalpies for reaction of THF-soluble monomers 1 and 2 with PMe3 were determined to be -28.7(0.5) and -28.5(0.4) kcal mol-1, respectively. The oligomerization behavior of 3 may be a result of reduced sigma- or pi-donation of carboxylato ligands compared to N-tosylamido ligands, because the values for nu CO in oxalato and bissulfonamido complexes 6-CO and (eta 5-C5Me5)Ir(CO)(TsNCH2CH2NTs) (4-CO) were 2064 and 2042 cm-1, respectively.  相似文献   

13.
The formation of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} (R=Me, Et) complexes was established by spectroscopic analysis. The infrared spectra of these complexes showed a sharp absorption due to the presence of coordinated carbonyl group in the region 2017-2013cm(-1). The N,N-dialkylcarbamoyl ligands showed a characteristic CO stretching absorption in the range 1609-1616cm(-1). The proton NMR spectra of these complexes revealed the expected singlet arising from five equivalent methyl groups on the cyclopentadienyl ring with satellites due to coupling to (195)Pt. The N-methyl and N-ethyl protons exhibited very broad resonances due to restricted rotation about the N-C bond at room temperature. On cooling to -30 degrees C, the N,N-dimethyl protons for complex Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} showed two sharp singlets at delta 2.86 and 3.09ppm as expected for the static structure. For the N,N-diethyl derivative, Pt(eta(5)-C(5)Me(5))(CO){C(O)NEt(2)}, the methyl protons exhibited only a single triplet at delta 1.06ppm at -10 degrees C due to coupling with the methylene protons. This single resonance arises through accidental overlap as the methylene protons of the ethyl groups are inequivalent at this temperature and each exhibited a quartet at delta 3.33 and 3.70ppm due to coupling with the methyl protons. The singlet resonances for the methyl and ring carbons of the eta(5)-C(5)Me(5) group found in (13)C{(1)H} NMR spectra are illustrative of the chemical equivalence of all the carbon atoms caused by free rotation of the ring in these complexes. The signals attributable to the carbonyl and carbamoyl carbon atom resonances are found downfield as two singlets each with a large coupling constant to platinum. The platinum coupling constants of the downfield resonances could not be identified for Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} due to presence of impurities.  相似文献   

14.
[(C5H5Co)2(μ-PMe2)2(μ-H)]BF4 ([II]BF4) reacts with C2(CO2Me)2 to give the products III and IV. The ionic compound III which formally is a 11 adduct of [II]BF4 and C2(CO2Me)2 has been characterized by X-ray structure analysis. III contains the group O=C(OMe)CH=C(CO2Me)PMe2 as a 6-electron donor ligand chelated to a cobalt atom and π-bonded to the other cobalt atom. Complex IV is a neutral compound which also can be obtained from [C5H5Co(μ-PMe2)]2 (I) and C2(CO2Me)2.  相似文献   

15.
16.
Tetranuclear cubane-type rare-earth methylidene complexes consisting of four "Cp'LnCH(2)" units, [Cp'Ln(μ(3)-CH(2))](4) (4-Ln; Ln = Tm, Lu; Cp' = C(5)Me(4)SiMe(3)), have been obtained for the first time through CH(4) elimination from the well-defined polymethyl complexes [Cp'Ln(μ(2)-CH(3))(2)](3) (2-Ln) or mixed methyl/methylidene precursors such as [Cp'(3)Ln(3)(μ(2)-Me)(3)(μ(3)-Me)(μ(3)-CH(2))] (3-Ln). The reaction of the methylidene complex 4-Lu with benzophenone leads to C═O bond cleavage and C═C bond formation to give the cubane-type oxo complex [Cp'Lu(μ(3)-O)](4) and CH(2)═CPh(2), while the methyl/methylidene complex 3-Tm undergoes sequential methylidene addition to the C═O group and ortho C-H activation of the two phenyl groups of benzophenone to afford the bis(benzo-1,2-diyl)ethoxy-chelated trinuclear complex [Cp'(3)Tm(3)(μ(2)-Me)(3){(C(6)H(4))(2)C(O)Me}] (6-Tm).  相似文献   

17.
The unusual formation of planar trimethylenemethane (TMM) dianion complexes of lanthanide metallocenes, [(C5Me5)2Ln]2[mu-eta3:eta3-C(CH2)3] (Ln = Sm, 1; La, 2; Pr, 3; Nd, 4; Y, 5) has been examined by synthesizing examples with metals from La to Y to examine the effects of radial size on structure and to provide closed shell examples for direct comparison with density functional theory (DFT) calculations. Synthetic routes to 1-4 have been expanded from the [(C5Me5)2Ln][(mu-Ph)2BPh2]/neopentyl lithium reaction involving beta-methyl elimination to a [(C5Me5)2Ln][(mu-Ph)2BPh2]/isobutyl lithium route. The synthetic pathways are sensitive to metal radius. To obtain 5, the methylallyl complex, (C5Me5)2Y[CH2C(Me)CH2], 6, was synthesized and treated with [(C5Me5)2YH]x. In the Lu case, the neopentyl complex [(C5Me5)2LuCH2C(CH3)3]x, 7, was isolated instead of the TMM product. X-ray crystallography showed that the metrical parameters of the planar TMM dianions in each complex are similar. The structural data have been compared with DFT calculations on the closed-shell lanthanum and lutetium complexes that suggest only limited covalent interactions with the lanthanide ion. Benzophenone (2 equiv) reacts with 1 to expand the original four-carbon TMM skeleton to a dianionic bis(alkoxide) ligand containing a symmetrically substituted C=CH2 moiety in [(C5Me5)2Sm]2[mu-(OCPh2CH2)2C=CH2], 8. In this reaction, the TMM complex reacts as a bifunctional bisallylic reagent that generates an organic framework containing a central vinyl group.  相似文献   

18.
The reactions of [Cp*Fe(mu-SR1)3FeCp*] (Cp* = eta5-C5Me5; R1 = Et, Me) with 1.5 equiv R2NHNH2 (R2 = Ph, Me) give the mu-eta2-diazene diiron thiolate-bridged complexes [Cp*Fe(mu-SR1)2(mu-eta2-R2N NH)FeCp*], along with the formation of PhNH2 and NH3. These mu-eta2-diazene diiron thiolate-bridged complexes exhibit excellent catalytic N-N bond cleavage of hydrazines under ambient conditions.  相似文献   

19.
(C5Me5R)2Ta2Cl4 (d2-d2) disproportionates under dinitrogen to [(C5Me4R)TaCl2]2(mu-N2) and the D3h cluster cation (C5Me4R)3Ta3(mu-Cl)6+ with anionic (C5Me4R)TaCl4-.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号