首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于支持向量机的磨粒识别   总被引:1,自引:0,他引:1  
由于神经网络的局限性,上个世纪末,支持向量机被提出和发展,它在模式识别方面有广泛的应用发展前途,并由最初的二元分类发展到现在的多元分类.本文根据支持向量机的最新发展,把最小二乘支持向量机应用在磨粒识别上,并取得了好的结果.  相似文献   

2.
非平行支持向量机是支持向量机的延伸,受到了广泛的关注.非平行支持向量机构造允许非平行的支撑超平面,可以描述不同类别之间的数据分布差异,从而适用于更广泛的问题.然而,对非平行支持向量机模型与支持向量机模型之间的关系研究较少,且尚未有等价于标准支持向量机模型的非平行支持向量机模型.从支持向量机出发,构造出新的非平行支持向量机模型,该模型不仅可以退化为标准支持向量机,保留了支持向量机的稀疏性和核函数可扩展性.同时,可以描述不同类别之间的数据分布差异,适用于更广泛的非平行结构数据等.最后,通过实验初步验证了所提模型的有效性.  相似文献   

3.
随着中国经济的不断发展,城市化进程不断推进,总人口逐年增加;农村人口逐年减少,粮食的需求量逐年增加,某些贫困地区已经出现粮食短缺的状况.本文选取了1986年-2016年辽宁省年粮食总产量、有效灌溉面积、农业化肥施用量、农业机械总动力、播种面积以及受灾面积等相关数据.利用支持向量机回归、线性回归,随机森林三种方法,对辽宁省粮食产量进行了预测,并比较了三种方法预测的精准度.  相似文献   

4.
周晓剑  肖丹  付裕 《运筹与管理》2022,31(8):137-142
传统的面向支持向量回归的一次性建模算法中样本增加时,均需从头开始学习,而增量式算法可以充分利用上一阶段的学习成果。SVR的增量算法通常基于ε-不敏感损失函数,该损失函数对大的异常值比较敏感,而Huber损失函数对异常值敏感度低。所以在有噪声的情况下,Huber损失函数是比ε-不敏感损失函数更好的选择,在现实情况当中。基于此,本文提出了一种基于Huber损失函数的增量式Huber-SVR算法,该算法能够持续地将新样本信息集成到已经构建好的模型中,而不是重新建模。与增量式ε-SVR算法和增量式RBF算法相比,在对真实数据进行预测建模时,增量式Huber-SVR算法具有更高的预测精度。  相似文献   

5.
为在数据缺失的情况下进行心脏病诊断并获得较高的准确率,对缺失值进行处理后,利用径向基函数支持向量机,采用交叉验证和网格搜索寻找最佳惩罚参数和关联参数,对UCI Heart数据集进行分类,多分类准确率为81.89%,二分类准确率为89.61%.仿真结果表明,支持向量机网络模型性能稳定,样本追加能力强,训练时间短,分类效果好,在心脏病等医疗诊断中有很大的应用潜力.  相似文献   

6.
针对英文情感分类问题,对不同样本采用不同权重,通过引入模糊隶属度函数,通过计算样本模糊隶属度确定样本隶属某一类程度的模糊支持向量机分类算法,通过对比选取不同核函数和不同惩罚系数的结果.仿真实验结果表明应用模糊支持向量机进行英文情感分类具有较好的分类能力和较高的识别能力.  相似文献   

7.
基于支持向量机的飞行事故率预测模型   总被引:1,自引:0,他引:1  
飞行事故率是表征飞行安全水平的重要指标,其预测是典型的小样本问题.针对目前飞行事故率预测中存在的预测精度不高的问题,提出了一种基于回归支持向量机的飞行事故率预测建模方法.最后结合实际算例,采用SVR进行了飞行事故率预测建模并把预测结果与灰色预测和灰色马尔柯夫链预测进行了对比.仿真结果表明SVR具有很高的建模精度和泛化能力,从而验证了采用SVR进行航空飞行事故率预测的合理性和先进性.  相似文献   

8.
在支持向量机预测建模中,核函数用来将低维特征空间中的非线性问题映射为高维特征空间中的线性问题.核函数的特征对于支持向量机的学习和预测都有很重要的影响.考虑到两种典型核函数—全局核(多项式核函数)和局部核(RBF核函数)在拟合与泛化方面的特性,采用了一种基于混合核函数的支持向量机方法用于预测建模.为了评价不同核函数的建模效果、得到更好的预测性能,采用遗传算法自适应进化支持向量机模型的各项参数,并将其应用于装备费用预测的实际问题中.实际计算表明采用混合核函数的支持向量机较单一核函数时有更好的预测性能,可以作为一种有效的预测建模方法在装备管理中推广应用.  相似文献   

9.
岩性识别是利用测井资料把储集岩石分类成不同岩性的过程,是多井评价、矿层描述中不可缺少的部分.在测井岩性识别过程中,聚类分析方法只有在样本趋于无穷大时,才能从理论上保证结果的精度;神经网络容易陷入局部最小,使用范围受到限制.提出一种新型的超球体支持向量机,并用粒子群优化算法进行参数寻优,建立测井岩性识别模型.应用结果表明,建立的模型可以准确地反映测井资料与地层岩性的非线性映射关系,且识别精度高,具有良好的学习和泛化能力,为相关领域的研究提供了新方法.  相似文献   

10.
一种基于支持向量机预测模型的精度提高方法与应用   总被引:1,自引:0,他引:1  
介绍了支持向量机模型的特点 ,针对该模型在经济预测中的应用 ,提出了一种提高该模型预测精度的方法 ,并进行了理论分析和实际应用的验证 ,说明了该方法能够获得更加准确的预测结果 .  相似文献   

11.
主要研究垃圾文本识别问题,利用苹果手机评论文本特征向量建立了SVM分类模型对垃圾文本进行识别,并与BP神经网络判别模型结果进行对比,得出苹果手机前400组训练样本的判别正确率为71%,后196组测试样本的判别正确率为70.12%.故得到,影响垃圾观点文本识别效果的主要原因为:1)评论文本的特征项的提取和文本特征空间向量求解.2)判别分类方法的选择,其中SVM文本识别效果最优.  相似文献   

12.
密度峰值聚类算法(DPC)是一种基于密度的非监督学习算法.分析用电类型复杂的电力负荷数据集时,存在负荷曲线聚类效果过分依赖人为参数设定和无法识别潜在用电模式的缺陷.结合非参数核密度估计,使用带宽搜索与边界优化提出一种适应多类型复杂用户的电力负荷数据优化聚类算法.在某市10KV真实数据集中进行算法测试,使用Davies-Bouldin有效性指标对比优化前后算法聚类效果.结果表明改进算法在面向用户类型复杂的电力数据集时,能够实现已知用电模式精确识别与潜在用电模式的深度挖掘并显著提高聚类有效性.  相似文献   

13.
产业结构理论一直是我国学者研究的重点问题。然而,由于产业结构的影响因素众多,因而难以建立有效的计量经济模型。本文建立了微分进化算法的支持向量机模型,有效地解决了产业结构趋势预测问题。同时,以日本主导产业的时间序列数据为例,对制造业结构变迁趋势进行了较为准确的多步预测,从而为我国当前制造业发展趋势提供了有益的借鉴。  相似文献   

14.
针对汽油机轻微漏气故障会被闭环反馈控制所掩盖,提出了一种基于在线希尔伯特变换(Hilbert-Huang Transform,HHT)和支持向量机(Support vector machine,SVM)的两阶段微小故障识别方法(Online HHT-SVM,OHS).第一阶段在嵌入式两滑动时间窗内通过HHT对发动机空燃比数据流进行在线时频分析,以实时获取空燃比发生异常的时刻;第二阶段通过SVM对异常时刻的数据流故障模式进行离线识别.根据氧传感器信号特征,对经验模态分解(Empirical mode decomposition,EMD)算法进行了改进,并从理论上进行了证明.基于两款发动机的实际运行数据验证了该方法的有效性.  相似文献   

15.
针对现有方法在智能制造过程中诊断能力有限和识别精度不高的问题,提出了一种与智能制造过程相适应的基于卷积神经网络的质量异常诊断模型。首先建立基于实时数据的过程质量图谱,以精准表达制造过程运行状态。其次,构建用于识别质量图谱的卷积神经网络诊断模型。最后,利用滑动窗口取值的方式对当前过程运行状态进行动态诊断,并通过某球磨过程验证了所提方法的有效性与实用性。结果表明,所提方法优于传统浅层模型,能够有效的对过程异常状态进行识别与诊断。  相似文献   

16.
在分析高峰负荷特点的基础上,建立了基于稳健回归模型的高峰负荷预测方法。该方法具有较强的稳健性,适应异常情况下的样本数据,能保持较满意预测精度。通过对辽宁省2002年电网负荷数据的预测模拟,验证了本文高峰预测方法的有效性。  相似文献   

17.
魏红燕 《经济数学》2018,(1):105-110
设计合理的需求侧电价是引导和促进用户实施需求响应的重要因素.基于可控负荷参与市场交易时的报价信息,借助机制设计中的激励相容理论,提出了一种可控负荷菜单定价模型,该模型以系统供电成本最小为目标,且用户类型是离散的.通过节点系统IEEE-30仿真实验,设计出适用于5种不同用户类型的菜单电价,并通过对比分析,表明所提出的菜单定价模型节约了系统供电成本,也为需求侧电价的设计提供了理论参考.  相似文献   

18.
战场目标的识别是一个相当复杂的过程,为了实现识别的自动化和计算机化,采用BP神经网络方法构造数学模型,选取合适的输入、输出及隐性结点,通过反复的学习和测试就可以得到符合实际的结果,从而为指挥员判断敌情提供决策依据.选取常用的音响、闪光、烟尘、机动和配置五种目标特征信息作为输入结点,通过多次仿真测试,说明运用BP神经网络进行战场目标识别是可行的,这也为情报处理自动化系统的实现提供了一个可靠的方法.  相似文献   

19.
包括图像识别在内的很多应用领域里,把单个样本表示成向量的集合的形式是很自然的想法,利用一个合适的核函数我们可以把这些向量映射到一个更高维的Hilbert空间,在这个高维空间里用Kernel PCA方法找到样本的高斯分布族,这样就可以把样本上的核函数定义成它们所服从的高斯分布密度函数的Bhattacharrya仿射.这样得到的核函数具有比较好的性质,比如说在各种变换下有稳定性表现,从而也说明了即使还有别的表示样本的方法,用向量集合的形式来表示单个的样本也是具有合理性的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号