首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bohm 's approach to quantum field theory is illustrated through its application to cavity quantum scalar field dynamics. Specific calculations demonstrate how the evolution of the well-defined scalar field is governed by the nature of its quantum state. The implications of the nonlocality inherent in quantum mechanics and the meaning of the classical limit are discussed in this context.  相似文献   

2.
Formulae for the distribution of relative translational energy of products from decomposition of collision complexes are derived from the Slater model of unimolecular rate theory. The development presented parallels the statistical transition state theory (RRKM) approach. Although a similar form of the energy distribution is found, the identical result is obtained in the classical limit only for the special case of a ‘loose’ complex configuration at the critical point.  相似文献   

3.
We consider the classical limit of the Nelson model, a system of stable nucleons interacting with a meson field. We prove convergence of the quantum dynamics towards the evolution of the coupled Klein–Gordon–Schrödinger equation. Also, we show that the ground state energy level of \(N\) nucleons, when \(N\) is large and the meson field approaches its classical value, is given by the infimum of the classical energy functional at a fixed density of particles. Our study relies on a recently elaborated approach for mean field theory and uses Wigner measures.  相似文献   

4.
5.
We show how kinetic theory, the statistics of classical particles obeying Newtonian dynamics, can be formulated as a field theory. The field theory can be organized to produce a self-consistent perturbation theory expansion in an effective interaction potential. The need for a self-consistent approach is suggested by our interest in investigating ergodic-nonergodic transitions in dense fluids. The formal structure we develop has been implemented in detail for the simpler case of Smoluchowski dynamics. One aspect of the approach is the identification of a core problem spanned by the variables ?? the number density and B a response density. In this paper we set up the perturbation theory expansion with explicit development at zeroth and first order. We also determine all of the cumulants in the noninteracting limit among the core variables ?? and B.  相似文献   

6.
7.
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a “quantum system” is just a label for (so to say “prequantum”) classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger’s equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The “effect of entanglement” is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.  相似文献   

8.
There are stable wavelets which satisfy the Schrödinger equation. The motion of a wavelet is determined by a set of ordinary differential equations. In a certain limit, a wavelet turns out to be the known representation of a classical material point. A de Broglie wave is constructed by superposing similar free wavelets. Conventional energy eigensolutions of the Schrödinger equation can be interpreted as ensembles of wavelets. If the dynamics of wavelets form the quantum mechanical counterpart of Newton's dynamics of particles, then conventional quantum mechanics is the counterpart of Gibbs's mechanics of ensembles. In this way, conventional quantum mechanics is reinterpreted on a deterministic basis. A difficulty of quantum field theory is predictable from this point of view.  相似文献   

9.
Conventional light-trapping theory, based on a ray-optics approach, was developed for standard thick photovoltaic cells. The classical theory established an upper limit for possible absorption enhancement in this context and provided a design strategy for reaching this limit. This theory has become the foundation for light management in bulk silicon PV cells, and has had enormous influence on the optical design of solar cells in general. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the standard limit can be substantially surpassed when optical modes in the active layer are confined to deep-subwavelength scale, opening new avenues for highly efficient next-generation solar cells.  相似文献   

10.
We investigate quantum properties of one anisotropic spin driven by an external time-dependent magnetic field which shows a transition from regular to irregular dynamics with increasing field strength in the classical limit. In particular we study the statistical properties of the quasi-spectrum. Our results support the conjecture that Poisson- and GOE-statistics are to be associated with integrable and nonintegrable systems resp. in the semiclassical limit. Approaching the quantum case we observe significant deviations from GOE statistics.  相似文献   

11.
It will be argued that Minkowski's implementation of distances is inconsistent. An alternative implementation will be proposed. In the new model the proper time of an object is taken as its fourth coordinate. Distances will be measured according to a four dimensional Euclidean metric. In the present approach mass is a constant of motion. A mass can therefore be ascribed to photons and neutrinos. Mechanics and dynamics will be reformulated in close correspondence with classical physics. Of particular interest is the equation of motion for the proper time momentum. In the classical limit it reduces to the classical law of conservation of (kinetic+potential) energy. In the relativistic limit it is similar to the conservation of energy of the theory of relativity. The conservation of proper time momentum allows for an alternative explanation for Compton scattering and pair annihilation. On the basis of the proper time formulation of electrodynamics also an alternative explanation will be offered for the spectra of hydrogenic atoms. The proper time formulation of gravitational dynamics leads to the correct predictions of gravitational time dilation, the deflection of light and the precession of the perihelia of planets. For this no curvature will be needed. That is, spacetime is flat everywhere, even in the presence of sources of gravitation. Some cosmological consequences will be discussed. The present approach gives a new notion to energy, antiparticles and the structure of spacetime. The contents of the present paper will have important implications for the foundations of physics in general.  相似文献   

12.
This paper is devoted to a constructiveand critical analysis of the structure of certain dynamical systems from a group manifold point of view recently developed. This approach is especially suitable for discussing the structure of the quantum theory, the classical limit, the Hamilton-Jacobi theory and other problems such as the definition and globalization of the Poincaré-Cartan form which appears in the variational approach to higher order dynamical systems. At the same time, i t opens a way for the classification of all hamiltonian and lagrangian systems associated with suitably defined dynamical groups. Both classical and quantum dynamics are discussed, and examples of all the different structures appearingin the theory are provided, including a treatment of constrained and generalized higher order dynamical systems.  相似文献   

13.
14.
Free bosonic fields are investigated at a classical level by imposing their characteristic de Broglie periodicities as constraints. In analogy with finite temperature field theory and with extra-dimensional field theories, this compactification naturally leads to a quantized energy spectrum. As a consequence of the relation between periodicity and energy arising from the de Broglie relation, the compactification must be regarded as dynamical and local. The theory, whose foundamental set-up is presented in this paper, turns out to be consistent with special relativity and in particular respects causality. The non trivial classical dynamics of these periodic fields show remarkable overlaps with ordinary quantum field theory. This can be interpreted as a generalization of the AdS/CFT correspondence.  相似文献   

15.
We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean–Vlasov–Fokker–Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh–Nagumo model neurons, which are often used to approximate Hodgkin–Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.  相似文献   

16.
We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.  相似文献   

17.
The modal interpretation of quantum mechanics allows one to keep the standard classical definition of realism intact. That is, variables have a definite status for all time and a measurement only tells us which value it had. However, at present modal dynamics are only applicable to situations that are described in the orthodox theory by projective measures. In this paper we extend modal dynamics to include positive operator measures (POMs). That is, for example, rather than using a complete set of orthogonal projectors, we can use an overcomplete set of nonorthogonal projectors. We derive the conditions under which Bell's stochastic modal dynamics for projective measures reduce to deterministic dynamics, showing (incidentally) that Brown and Hiley's generalization of Bohmian mechanics [quant-ph/0005026, (2000)] cannot be thus derived. We then show how deterministic dynamics for positive operators can also be derived. As a simple case, we consider a Harmonic oscillator, and the overcomplete set of coherent state projectors (i.e., the Husimi POM). We show that the modal dynamics for this POM in the classical limit correspond to the classical dynamics, even for the nonclassical number state |n>. This is in contrast to the Bohmian dynamics, which for energy eigenstates, the dynamics are always non-classical.  相似文献   

18.
《Nuclear Physics B》2006,743(3):249-275
We recently proposed a new approach to the Casimir effect based on classical ray optics (the “optical approximation”). In this paper we show how to use it to calculate the local observables of the field theory. In particular, we study the energy–momentum tensor and the Casimir pressure. We work three examples in detail: parallel plates, the Casimir pendulum and a sphere opposite a plate. We also show how to calculate thermal corrections, proving that the high temperature ‘classical limit’ is indeed valid for any smooth geometry.  相似文献   

19.
The spectral fluctuations of quantum (or wave) systems with a chaotic classical (or ray) limit are mostly universal and faithful to random-matrix theory. Taking up ideas of Pechukas and Yukawa we show that equilibrium statistical mechanics for the fictitious gas of particles associated with the parametric motion of levels yields spectral fluctuations of the random-matrix type. Previously known clues to that goal are an appropriate equilibrium ensemble and a certain ergodicity of level dynamics. We here complete the reasoning by establishing a power law for the dependence of the mean parametric separation of avoided level crossings. Due to that law universal spectral fluctuations emerge as average behavior of a family of quantum dynamics drawn from a control parameter interval which becomes vanishingly small in the classical limit; the family thus corresponds to a single classical system. We also argue that classically integrable dynamics cannot produce universal spectral fluctuations since their level dynamics resembles a nearly ideal Pechukas–Yukawa gas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号