首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The performance of electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was evaluated for the ultra-trace determination of total selenium in sediment reference materials. Citric acid, when combined with an appropriate thermal program, promoted the early release of Se in a molecular form from the graphite surface, effecting a separation of the analyte from the concomitant matrix, thereby demonstrating the use of the ETV as a thermochemical reactor. No special sample pretreatment is needed and an absolute detection limit of 10 pg was achieved. Concentrations of Se in different sediment CRMs were determined and results obtained by both isotope dilution (ID) and standard addition (SA) methodologies were compared and evaluated. Mass bias effects prevented accurate application of ID techniques.  相似文献   

2.
Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 μg L−1 (La) ~ 0.09 μg L− 1 (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) ~ 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 μg L− 1 (La) ~ 0.4 μg L− 1 (Pb) with RSDs of 3.2% (Mo) ~ 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.  相似文献   

3.
Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Ga, Ge, As, Se and Sb in fly ash samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd and ascorbic acid were used as the mixed modifiers to enhance the ion signals. This method has been applied to determine Ga, Ge, As, Se and Sb in NIST SRM 1633a and 1633b coal fly ash reference materials and a fly ash sample collected locally. Since the sensitivities of the elements studied in slurry solution and aqueous solution were different slightly, analyte addition technique was used for the determination of Ga, Ge, As, Se and Sb in these samples. The As and Se analysis results of the reference materials agreed with the certified values. The results for which no certified value was available were also found to be in good agreement between the ETV-ICP-MS results and the reference values. The reference value was obtained by digesting the samples and analyzing the digested sample solutions by pneumatic nebulization Dynamic Reaction Cell™ (DRC) ICP-MS. The method detection limits estimated from analyte addition curves were about 0.23, 0.13, 0.17, 0.25 and 0.11 μg g−1 for Ga, Ge, As, Se and Sb, respectively, in original fly ash samples.  相似文献   

4.
Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 °C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 °C up to 1000 °C.  相似文献   

5.
The performance of an electro thermal vaporization (ETV) unit as a sample introduction device for an inductively coupled plasma mass spectrometer (quadrupole-ICP-MS) was evaluated. The technique was found to have several advantages over the conventional nebulization method. Some features of ETV-ICP-MS for single element determination have been investigated. Attempts were made to optimize the experimental parameters such as vaporization temperature, vaporization interval and carrier gas flow rate. The study highlights on the determination of Cr, Mn, Al and Na. A compromise condition for multi-element determination was suggested and tested from single-element optimum conditions obtained. 25 L solution was used for the analysis. Results obtained for the analysis of conc. HCl samples are also reported.  相似文献   

6.
The use of electrothermal vaporisation (ETV) from a graphite furnace as a means of sample introduction in inductively coupled plasma mass spectrometry (ICP-MS) permits the direct analysis of solid samples. A multi-step furnace temperature programme is used to separate the vaporisation of the target element(s) and of the matrix components from one another. Sometimes, a chemical modifier is used to enable a higher thermal pre-treatment temperature, by avoiding premature analyte losses (stabilisation) or promoting the selective volatilisation of matrix components. In almost all instances, accurate results can be obtained via external calibration or single standard addition using an aqueous standard solution. Absolute limits of detection are typically ~1 pg, which corresponds to 1 ng/g for a typical sample mass of 1 mg. Real-life applications carried out in the author's lab are used to illustrate the utility of this approach. These applications aim at trace element determination in industrial and environmental materials. The industrial materials analysed include different types of plastics - Carilon, polyethylene, poly(ethyleneterephtalate) and polyamide - and photo- and thermographic materials. As samples from environmental origin, plant material, animal tissue and sediments were investigated. Some applications aimed at a multi-element determination, while in other, the content of a single, but often challenging, element (e.g., Si or S) had to be measured. ETV-ICP-MS was also used in elemental speciation studies. Separation of Se-containing proteins was accomplished using polyacrylamide gel electrophoresis (PAGE). Subsequent quantification of the Se content in the protein spots was carried out using ETV-ICP-MS. As the volatilisation of methylmercury and inorganic mercury could be separated from one another with respect to time, no chromatographic or electrophoretic separation procedure was required, but ETV-ICP-MS as such sufficed for Hg speciation in fish tissue.  相似文献   

7.
Purity evaluation of amino acids using nuclear magnetic resonance spectroscopy is reported. Three amino acids (aspartic acid, valine, and arginine) and certified reference materials (CRMs), such as acidic, neutral, and basic amino acids, as well as a low pure sample of valine were used as the analytes. DCl solution, D2O, and NaOD solution were used as the preparation solvents. The quantitative values were obtained from all observed signals and compared with the certified values of the CRMs. When an amino acid was dissolved in water, a strong HOD signal due to proton exchange was observed. When the signal adjoining the HOD signal was considered in the evaluation, the accurate quantitative value could not be obtained. Therefore, under optimized conditions, the analyte signals separated from the HOD signal were chosen for purity determination of amino acids. As a result, the quantitative values were in agreement with the certified values of CRMs. An expanded uncertainty was estimated to be approximately 0.002 kg kg?1. We also discuss the effect of impurities on purity determination based on all signals and conclude that agreement of quantitative values determined from different signals in a molecule is a good indication of the accuracy of the results.  相似文献   

8.
Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6 ng g−1 in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5 min per sample (2.5 min for grinding, 0.5–1 min for weighing a 4-mg aliquot and 87 s for the ETV program), this approach shows great promise for fast screening of food samples.  相似文献   

9.
A new method of ionic liquids based cycle flow single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the determination of trace Co, Hg and Pb with 1-(2-pyridylazo)-2-naphthol (PAN) as both extractant and chemical modifier and 1-butyl-3-methylimidazolium hexafluorophosphate as the extraction solvent. Several factors that influence the microextraction efficiency, such as sample pH, sample flow rate, microdrop volume and extraction time, were investigated and the optimized microextraction conditions were established. Co, Hg and Pb in the post-extraction ionic liquids phase were directly determined by ETV-ICP-MS with the use of PAN as chemical modifier. The chemical modification of PAN in ETV-ICP-MS was studied and the factors affecting the vaporization behaviors of target analytes were investigated. Under the optimized conditions, the detection limits of the method were 1.5, 9.8 and 6.7 pg/mL for Co, Hg and Pb, with the relative standard deviations for 0.5 ng/mL (n = 7) of Co, Hg and Pb were 7.7%, 5.2% and 12.0%, respectively. After 10 min of extraction, the enrichment factors were 350 (Co), 50 (Hg) and 60 (Pb). The proposed method was successfully applied to the determination of trace Co, Hg and Pb in human serum and environmental water samples. In order to validate the developed method, a certified reference material of human hair (GBW07601) was analyzed and the determined values were in good agreement with the certified values.  相似文献   

10.
An inductively coupled plasma mass spectrometer (ICP-MS) was coupled on-line with an electrothermal vaporisation (ETV). The influence of aerosol gas flow as well as the variation of the coupling distance on the signal intensity was investigated and compared with the results of hydraulic high-pressure nebulizer (HHPN) measurements. Furthermore, temperature programs known from graphite furnace atomic absorption spectroscopy (GFAAS) were applied to ETV-ICP-MS. After optimisation of temperature programs, calibration series based on mono-element and multi-element solutions were carried out. The dynamic range and the detection limits of the method were determined. By use of internal standardisation it was tried to improve linearity and reproducibility. According to the results, internal standardisation does not have a great impact on linearity, but may be a useful tool to improve reproducibility. However, the latter is still low.  相似文献   

11.
This article describes work on the development of a highly accurate RNAA method for determination of selenium in biological samples. The analytical post-irradiation procedure is based on a combination of cation-exchange and extraction chromatography with final selective and quantitative fixation of selenium on a column packed with 3,3′-diaminobenzidine (DAB) supported on Amberlite XAD4, followed by gamma-ray spectrometric measurement. The suitability and accuracy of the method was demonstrated by analysing CRMs with certified selenium content. The uncertainty budget for Se determination in standard reference material Peach Leaves NBS 1547 was estimated; the combined standard uncertainty was calculated as 1.7%. The described method fulfils all the criteria for definitive methods. It was subsequently used for determination of selenium in biological materials intended as new CRMs and proficiency test samples.  相似文献   

12.
A method for the multi-elemental determination of As, Ge, Hg, Pb, Sb, Se and Sn in coal reference materials by slurry sampling chemical vapor generation (CVG) using external calibration and isotopic dilution (ID) calibration and detection by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) is proposed. As, Ge, Sb, Se and Sn were determined using the external calibration, while, Hg, Pb, Se and Sn were determined by isotopic dilution. About 50–250 mg of sample was mixed with an acid solution, containing aqua regia and HCl, in an ultrasonic bath. For the isotopic dilution calibration, the enriched isotopes 201Hg, 206Pb, 77Se and 119Sn were added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. The vapor produced by the reaction of the sample slurry with the reducing agent was transported to the vaporizer and trapped in a Ir-treated graphite tube at 200 °C, before vaporization at 2100 °C and transportation of the vapor to the plasma. The accuracy of the method was assured by the analysis of four certified reference coal samples, using external calibration with aqueous solutions, prepared in the same medium and subjected to the same CVG and trapping procedure as the slurries and also by isotopic dilution calibration. The obtained concentrations were in agreement with the certified values, using the t-Student test for a confidence level of 95%. The detection limits (3 s; n = 5) of isotopic dilution, in ng g− 1, were: 0.4 for Hg, 900 for Pb, 0.3 for Se and 0.2 for Sn. For external calibration, the detection limits, in ng g− 1, were: 1.6 for As, 0.1 for Ge, 0.3 for Sb, 0.9 for Se and 7.5 for Sn. The relative standard deviations generally were lower than 14%, adequate for slurry analysis.  相似文献   

13.
Slurry sampling electrothermal vaporization (ETV) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to determine As and Se in soil and sludge samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd and ascorbic acid were used as mixed modifiers to enhance the ion signals. The effectiveness of ETV sample introduction technique for alleviating various spectral interferences in ICP-MS analysis has been demonstrated. This method has been applied to determine As and Se in NIST SRM 2709 San Joaquin soil reference material and NIST SRM 2781 domestic sludge reference material and a farmland soil sample collected locally. Since the sensitivities of As and Se in slurry solution and aqueous solution were different, analyte addition technique was used to determine As and Se in these samples. The As and Se analysis results of the reference materials agreed with the certified values. The precision between sample replicates was better than 5% for all determinations. The method detection limit estimated from analyte addition curves was about 0.03 and 0.02 μg g−1 for As and Se, respectively, in original soil and sludge samples.  相似文献   

14.
A new method of solvent bar microextraction (SBME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of As(III) and As(V) in water samples was developed. The method is based on the chelation of As(III) and ammonium pyrrolidine dithiocarbamate (APDC) under the selected conditions, and the As(III)-PDC complex could be extracted into the organic phase, while As(V) remained in aqueous solution. The post-extraction organic phase was directly injected into ETV-ICP-MS for determination of As(III) with the use of iridium as permanent chemical modifier. As(V) was reduced to As(III) by L-cysteine and was then subjected to SBME prior to total As determination. The assay of As(V) was based on subtracting As(III) from total As. The factors affecting on the SBME, such as organic solvent, sample pH, chelating reagent concentration, stirring rate and extraction time, and chemical modification of iridium in ETV-ICP-MS have been studied. Under the optimized conditions, the enrichment factor of 220-fold could be achieved in 15 min extraction, the limit of detection (LOD) for As(III) was 0.32 pg mL− 1, and the relative standard deviation (RSD) was 8.8% (0.1 ng mL− 1, n = 9). Compared with hollow fiber liquid phase microextraction (HF-LPME), SBME has a higher enrichment factor and faster extraction kinetics. In order to validate the accuracy of the method, a Certified Reference Material of GSBZ50004-88 (No. 200420) water sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also applied to the speciation of inorganic As in environmental waters with satisfactory results.  相似文献   

15.
Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.  相似文献   

16.
Robert Piech 《Talanta》2007,72(2):762-767
Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33 nM (0.02 μg/L) at deposition time (240 s) could be obtained. For seven successive determinations of As(III) at concentration of 5 nM relative standard deviation was 2.5% (n = 7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.  相似文献   

17.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

18.
A procedure for the determination of Cd, Cu, Pb, Se and Tl by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with calibration by isotopic dilution is proposed. The slurry is prepared by mixing the sample with diluted nitric and hydrofluoric acids in an ultrasonic bath and then in a water bath at 60 °C for 120 min. The slurries were let to stand at least for 12 h, manually shaken before poured into the autosampler cups and homogenized by passing through an argon flow, just before pipetting it into the furnace. The analytes were determined in two groups, according to their thermal behaviors. The furnace temperature program was optimized and the selected compromised pyrolysis temperatures were: 400 °C for Cd, Se and Tl and 700 °C for Cu and Pb. The vaporization temperature was 2300 °C. The analyses were carried out without modifier as no significant effect was observed for different tested modifiers. Different sample particle sizes did not affect the sensitivity significantly, then a particle size ≤50 μm was adopted. The accuracy was checked by analyzing five certified reference sediments, with analytes concentrations from sub-μg g−1 to a few hundreds μg g−1. The great majority of the obtained concentrations were in agreement with the certified values. The detection limits, determined for the MESS-2 certified sediment, were, in μg g−1: 0.01 for Cd; 0.8 for Cu; 0.4 for Pb; 0.4 for Se and 0.06 for Tl. The precision was adequate with relative standard deviations lower than 12%. Isotopic dilution showed to be an efficient calibration technique for slurry, as the extraction of the analyte to the liquid phase of the slurry and the reactions in the vaporizer must help the equilibration between the added isotope and the isotope in the sample.  相似文献   

19.
A method has been developed for measurement of the homogeneity of analyte distribution in powdered materials by use of electrothermal vaporization with inductively coupled plasma mass spectrometric (ETV-ICP-MS) detection. The method enabled the simultaneous determination of As, Cd, Cu, Fe, Mn, Pb, and Zn in milligram amounts of samples of biological origin. The optimized conditions comprised a high plasma power of 1,500 W, reduced aerosol transport flow, and heating ramps below 300 degrees C s(-1). A temperature ramp to 550 degrees C ensured effective pyrolysis of approximately 70% of the organic compounds without losses of analyte. An additional hold stage at 700 degrees C led to separation of most of the analyte signals from the evaporation of carbonaceous matrix compounds. The effect of time resolution of signal acquisition on the precision of the ETV measurements was investigated. An increase in the number of masses monitored up to 20 is possible with not more than 1% additional relative standard deviation of results caused by limited temporal resolution of the transient signals. Recording of signals from the nebulization of aqueous standards in each sample run enabled correction for drift of the sensitivity of the ETV-ICP-MS instrument. The applicability of the developed method to homogeneity studies was assessed by use of four certified reference materials. According to the best repeatability observed in these sample runs, the maximum contribution of the method to the standard deviation is approximately 5% to 6% for all the elements investigated.  相似文献   

20.
A method of electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of trace lanthanides and yttrium in soil samples with a polytetrafluorethylene (PTFE) emulsion as chemical modifier to promote the vaporization of the analytes from the graphite furnace was developed in this paper. The analytical characteristics, spectral interference and matrix effect of the analytical method were evaluated and critically compared with those of pneumatic nebulization inductively coupled plasma mass spectrometry (PN-ICP-MS). Under the optimized operation conditions, the relative detection limits of lanthanides (La-Lu) and yttrium for ETV-ICP-MS and PN-ICP-MS were 0.4-20 ng l−1 and 1.0-21 ng l−1, respectively, the absolute detection limits for ETV-ICP-MS were 4-200 fg, which were improved by 1-2 orders of magnitude compared with PN-ICP-MS. While the analytical precision of ETV-ICP-MS is worse than that of PN-ICP-MS, with the R.S.D.s (%) of 4.1-10% for the former and 2.9-7.8% for the latter. Regarding to the matrix effect, both conventional method and stepwise dilution method were employed to observe the effect of matrix and the very similar results were obtained. It was found that the highest tolerance concentration of the matrix is 1000 mg l−1 and 800 mg l−1 for ETV-ICP-MS and PN-ICP-MS, respectively. To assess the accuracy, the proposed method was applied to the determination of trace lanthanides and yttrium in three different soil standard reference materials and one soil sample, and the determined values are in good agreement with the certified values or reference values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号