首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Given a graph G and a positive integer d, an L(d,1)-labeling of G is a function f that assigns to each vertex of G a non-negative integer such that if two vertices u and v are adjacent, then |f(u)−f(v)|d; if u and v are not adjacent but there is a two-edge path between them, then |f(u)−f(v)|1. The L(d,1)-number of G, λd(G), is defined as the minimum m such that there is an L(d,1)-labeling f of G with f(V){0,1,2,…,m}. Motivated by the channel assignment problem introduced by Hale (Proc. IEEE 68 (1980) 1497–1514), the L(2,1)-labeling and the L(1,1)-labeling (as d=2 and 1, respectively) have been studied extensively in the past decade. This article extends the study to all positive integers d. We prove that λd(G2+(d−1)Δ for any graph G with maximum degree Δ. Different lower and upper bounds of λd(G) for some families of graphs including trees and chordal graphs are presented. In particular, we show that the lower and the upper bounds for trees are both attainable, and the upper bound for chordal graphs can be improved for several subclasses of chordal graphs.  相似文献   

2.
In 1994, van Trung (Discrete Math. 128 (1994) 337–348) [9] proved that if, for some positive integers d and h, there exists an Sλ(t,k,v) such that
then there exists an Sλ(vt+1)(t,k,v+1) having v+1 pairwise disjoint subdesigns Sλ(t,k,v). Moreover, if Bi and Bj are any two blocks belonging to two distinct such subdesigns, then d|BiBj|<kh. In 1999, Baudelet and Sebille (J. Combin. Des. 7 (1999) 107–112) proved that if, for some positive integers, there exists an Sλ(t,k,v) such that
where m=min{s,vk} and n=min{i,t}, then there exists an
having pairwise disjoint subdesigns Sλ(t,k,v). The purpose of this paper is to generalize these two constructions in order to produce a new recursive construction of t-designs and a new extension theorem of t-designs.  相似文献   

3.
Let A be a positive definite, symmetric matrix. We wish to determine the largest eigenvalue, λ1. We consider the power method, i.e. that of choosing a vector v0 and setting vk = Akv0; then the Rayleigh quotients Rk = (Avk, vk)/(vk, vk) usually converge to λ1 as k → ∞ (here (u, v) denotes their inner product). In this paper we give two methods for determining how close Rk is to λ1. They are both based on a bound on λ1Rk involving the difference of two consecutive Rayleigh quotients and a quantity ωk. While we do not know how to directly calculate ωk, we can given an algorithm for giving a good upper bound on it, at least with high probability. This leads to an upper bound for λ1Rk which is proportional to (λ21)2k, which holds with a prescribed probability (the prescribed probability being an arbitrary δ > 0, with the upper bound depending on δ).  相似文献   

4.
For a positive integer k, a k-subdominating function of a graph G=(V,E) is a function f : V→{−1,1} such that ∑uNG[v]f(u)1 for at least k vertices v of G. The k-subdomination number of G, denoted by γks(G), is the minimum of ∑vVf(v) taken over all k-subdominating functions f of G. In this article, we prove a conjecture for k-subdomination on trees proposed by Cockayne and Mynhardt. We also give a lower bound for γks(G) in terms of the degree sequence of G. This generalizes some known results on the k-subdomination number γks(G), the signed domination number γs(G) and the majority domination number γmaj(G).  相似文献   

5.
In a graph G = (X, E), we assign to each node υ a positive integer b(υ)≤dG(υ), where dG(υ) is the degree of υ in G. Let P be a collection of edge-disjoint chains such that no two chains in P have a common endpoint and such that in the partial graph H = (X, E(P)) formed by the edge set E(P) of P we have dH(υ)≤b(υ) for each node υ. P is called a chain packing.

We extend the augmenting chain theorem of matchings to chain packings and we find an analogue of matching matroids. We also study chain packings by short chains, i.e., chains of lengths one or two. We show that we may restrict ourselves to packings by short chains when we want to find a packing containing a maximum number of chains. We show that the use of augmenting chains fails in general to produce a new short chain packing from an old one, even for bipartite graphs, but that it does do so for the special case of trees. For the case of trees, we also find a min-max result for packings by short chains.  相似文献   


6.
Wang  Tao  Liu  Ming Ju  Li  De Ming 《数学学报(英文版)》2019,35(11):1817-1826
Let G be a graph with vertex set V (G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by integers {1, 2, …,|E(G)|} such that for any vertex v the sum of the labels of the edges incident with v is equal to (1+|E(G)|)/2·d(v), where d(v) is the degree of v. Let f be a proper edge coloring of G such that for each vertex vV (G),|{e:eEv, f(e) ≤ Δ/2}|=|{e:eEv, f(e) > Δ/2}|, and such an f is called a balanced edge coloring of G. In this paper, we show that if G is a supermagic even graph with a balanced edge coloring and m ≥ 1, then (2m + 1)G is a supermagic graph. If G is a d-magic even graph with a balanced edge coloring and n ≥ 2, then nG is a d-magic graph. Results in this paper generalise some known results.  相似文献   

7.
The SUM COLORING problem consists of assigning a color c(vi)Z+ to each vertex viV of a graph G=(V,E) so that adjacent nodes have different colors and the sum of the c(vi)'s over all vertices viV is minimized. In this note we prove that the number of colors required to attain a minimum valued sum on arbitrary interval graphs does not exceed min{n;2χ(G)−1}. Examples from the papers [Discrete Math. 174 (1999) 125; Algorithmica 23 (1999) 109] show that the bound is tight.  相似文献   

8.
We consider a variation of a classical Turán-type extremal problem (F. Chung, R. Graham, Erd s on Graphs: His Legacy of Unsolved Problems, AK Peters Ltd., Wellesley, 1998, Chapter 3) as follows: Determine the smallest even integer σ(Kr,s,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(Kr,s,n) is potentially Kr,s-graphic, where Kr,s is a r×s complete bipartite graph, i.e., π has a realization G containing Kr,s as its subgraph. In this paper, we first give sufficient conditions for a graphic sequence being potentially Kr,s-graphic, and then we determine σ(Kr,r,n) for r=3,4.  相似文献   

9.
A weighted graph (G,w) is a graph G together with a positive weight-function on its vertex set w : V(G)→R>0. The weighted domination number γw(G) of (G,w) is the minimum weight w(D)=∑vDw(v) of a set DV(G) such that every vertex xV(D)−D has a neighbor in D. If ∑vV(G)w(v)=|V(G)|, then we speak of a normed weighted graph. Recently, we proved that
for normed weighted bipartite graphs (G,w) of order n such that neither G nor the complement has isolated vertices. In this paper we will extend these Nordhaus–Gaddum-type results to triangle-free graphs.  相似文献   

10.
A labeling of a graph is a function f from the vertex set to some subset of the natural numbers. The image of a vertex is called its label. We assign the label |f(u)−f(v)| to the edge incident with vertices u and v. In a k-equitable labeling the image of f is the set {0,1,2,…,k−1}. We require both the vertex labels and the edge labels to be as equally distributed as possible, i.e., if vi denotes the number of vertices labeled i and ei denotes the number of edges labeled i, we require |vivj|1 and |eiej|1 for every i,j in {0,1,2,…,k−1}. Equitable graph labelings were introduced by I. Cahit as a generalization for graceful labeling. We prove that every tree is 3-equitable.  相似文献   

11.
Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1, 1999, pp. 387–400) considered a variation of the classical Turán-type extremal problems as follows: For a given graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(H,n) has a realization G containing H as a subgraph. In this paper, for given integers k and ℓ, ℓ7 and 3kℓ, we completely determine the smallest even integer σ(kC,n) such that each n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(kC,n) has a realization G containing a cycle of length r for each r, krℓ.  相似文献   

12.
The following theorem is proved. If the sets and a εn+1i=1 conv Vi, then there exist elements vi ε Vi (i=1…,n+1) such that a ε conv{v1,…,vn+1}. This is generalization of Carathéodory's theorem. By applying this and similar results some open questions are answered.  相似文献   

13.
Let S be a compact, weak self-similar perfect set based on a system of weak contractions fj, j=1,…,m each of which is characterized by a variable contraction coefficient j(l) as d(fj(x),fj(y)) j(l)d(x,y), d(x,y)<l, l>0. If the relation ∑mj=1j(l0)<1 holds at at least one point l0, then every nonempty compact metric space is a continuous image of the set S.  相似文献   

14.
C-normality and solvability of groups   总被引:6,自引:0,他引:6  
A subgroup H is called c-normal in group G if there exists a normal subgroup N and G such that HN = G and HNHG where HG =: Core(H) = gG Hg is the maximal normal subgroup of G which is contained in H. We obtain some results about the c-normal subgroups and the solvability of groups.  相似文献   

15.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

16.
An undirected routing problem is a pair (G,R) where G is an undirected graph and R is an undirected multigraph such that V(G)=V(R). A solution to an undirected routing problem (G,R) is a collection P of undirected paths of G (possibly containing multiple occurrences of the same path) such that edges of R are in one-to-one correspondence with the paths of P, with the path corresponding to edge {u,v} connecting u and v. We say that a collection of paths P is k-colorable if each path of P can be colored by one of the k colors so that the paths of the same color are edge-disjoint (each edge of G appears at most once in the paths of each single color). In the circuit-switched routing context, and in optical network applications in particular, it is desirable to find a solution to a routing problem that is colorable with as few colors as possible. Let Qn denote the n-dimensional hypercube, for arbitrary n1. We show that a routing problem (Qn,R) always admits a 4d-colorable solution where d is the maximum vertex degree of R. This improves over the 16d/2-color result which is implicit in the previous work of Aumann and Rabani [SODA95, pp. 567–576]. Since, for any positive d, there is a multigraph R of degree d such that any solution to (Qn,R) requires at least d colors, our result is tight up to a factor of four. In fact, when d=1, it is tight up to a factor of two, since there is a graph of degree one (the antipodal matching) that requires two colors.  相似文献   

17.
Let G=(V,E,ω) be an incomplete graph with node set V, edge set E, and nonnegative weights ωij's on the edges. Let each edge (vi,vj) be viewed as a rigid bar, of length ωij, which can rotate freely around its end nodes. A realization of a graph G is an assignment of coordinates, in some Euclidean space, to each node of G. In this paper, we consider the problem of determining whether or not a given realization of a graph G is rigid. We show that each realization of G can be epresented as a point in a compact convex set ; and that a generic realization of G is rigid if and only if its corresponding point is a vertex of Ω, i.e., an extreme point with full-dimensional normal cone.  相似文献   

18.
Let Dn,r denote the largest rth nearest neighbor link for n points drawn independently and uniformly from the unit d-cube Cd. We show that according as r < d or r>d, the limiting behavior of Dn,r, as n → ∞, is determined by the two-dimensional ‘faces’ respectively one-dimensional ‘edges’ of the boundary of Cd. If d = r, a ‘balance’ between faces and edges occurs. In case of a d-dimensional sphere (instead of a cube) the boundary dominates the asymptotic behavior of Dn,r if d 3 or if d = 2, r 3.  相似文献   

19.
Consider two transient Markov processes (Xvt)tεR·, (Xμt)tεR· with the same transition semigroup and initial distributions v and μ. The probability spaces supporting the processes each are also assumed to support an exponentially distributed random variable independent of the process.

We show that there exist (randomized) stopping times S for (Xvt), T for (Xμt) with common final distribution, L(XvS|S < ∞) = L(XμT|T < ∞), and the property that for t < S, resp. t < T, the processes move in disjoint portions of the state space. For such a coupling (S, T) it is shown

where denotes the bounded harmonic functions of the Markov transition semigroup. Extensions, consequences and applications of this result are discussed.  相似文献   


20.
Toru Kojima   《Discrete Mathematics》2003,270(1-3):299-309
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)−f(y)| : xyE(G)} taken over all proper numberings f of G. The composition of two graphs G and H, written as G[H], is the graph with vertex set V(GV(H) and with (u1,v1) is adjacent to (u2,v2) if either u1 is adjacent to u2 in G or u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the composition of two graphs. Let G be a connected graph. We denote the diameter of G by D(G). For two distinct vertices x,yV(G), we define wG(x,y) as the maximum number of internally vertex-disjoint (x,y)-paths whose lengths are the distance between x and y. We define w(G) as the minimum of wG(x,y) over all pairs of vertices x,y of G with the distance between x and y is equal to D(G). Let G be a non-complete connected graph and let H be any graph. Among other results, we prove that if |V(G)|=B(G)D(G)−w(G)+2, then B(G[H])=(B(G)+1)|V(H)|−1. Moreover, we show that this result determines the bandwidth of the composition of some classes of graphs composed with any graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号