首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The asymptotic field near an interface crack tip is analyzed with the fully nonlinear theory. By dividing the crack tip field into narrowing sectors and an expanding sector, the asymptotic equations for the crack tip field are derived and solved. The singular characters of stress and strain near the crack tip are revealed.  相似文献   

2.
Using a proposed constitutive relation for materials with creep behavior, the stress and strain distribution near the tip of a Mode III growing crack is examined. Asymptotic equations of the crack tip field are derived and solved numerically. The stresses remain finite at the crack tip. Obtained qualitatively is the crack tip velocity and the local autonomy of the near tip field solution is discussed.  相似文献   

3.
This work is concerned with the cracking characteristics of mixed mode dislocations near a lip-like mode crack, stress intensity and strain energy density factor are obtained by using conformal mapping, singularity analysis and Cauchy integrals. Shielding effect generated by screw dislocation near a lip-like mode crack decreases with the increment of the distance between screw dislocation and crack tip. Larger distance between two faces of the crack leads to the shielding effect waning. The strain energy density factor of mode III decreases with the increment of the distance between dislocation and crack tip. Larger distance between two faces of lip-like mode crack also leads to the strain energy density factor waning and encourages crack initiation; the shielding effects generated by edge dislocation near the crack decrease with the increment of the distance between edge dislocation and crack tip.  相似文献   

4.
In ductile fracture, voids near a crack tip play an important role. From this point of view, a large deformation finite element analysis has been made to study the deformation, stress and strain, and void ratio near the crack tip under mixed mode plane strain loading conditions, employing Gurson's constitutive equation which has taken into account the effects of void nucleation and growth. The results show that: (i) one corner of the crack tip sharpens while the other corner blunts, (ii) the stress and strain distributions except for the near crack tip region, can be superimposed by normalizing distance from the crack tip by a crack tip deformation length, i.e., a steady-state solution under a mixed mode condition has been obtained, (iii) the field near a crack tip can be divided into four characteristic fields (K field, HRR field, blunted crack tip field, and damaged region), and (iv) the strain and void volume fraction become concentrated in the sharpened part of a crack tip with increasing Mode II component.  相似文献   

5.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant ΔK-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks.A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.  相似文献   

6.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

7.
Joints of different materials have many applications in structural engineering and microelectronics. In the present contribution the joint is modelled as a bi-material notch. The singular stress field near the notch tip is investigated. Depending on the notch geometry and materials, the stress field can have one or two singularities. It is shown that to study the problem of a crack onset at the notch, both terms have to be taken into account. Criteria for the direction and for crack nucleation are formulated. The approach utilizes the knowledge of the strain energy density factor distribution in a bi-material notch vicinity.  相似文献   

8.
This paper discusses an in situ observation of fracture behavior around a crack tip in ferroelectric ceramics under combined electromechanical loading by use of a moiré interferometry technique. The deformation field induced by the electric field and the stress concentration near the crack tip in three-points bending experiments was measured. By analysis of the moiré images it is found that under a constant mechanical load, the electric field almost has no effect on the crack extension in the case that the directions of the poling, electric field and crack extension are perpendicular to each other. When the poling direction is parallel to the crack extension direction and perpendicular to the electric field, the strain decreases faster than that calculated by FEM with and without electrical loading as one goes away from the crack tip. In addition, as the electric field intensity increases, the strain near the crack tip increases, and the strain concentration becomes more significant. The project supported by the National Natural Science Foundation of China (10132010, 10025209, 10232023)  相似文献   

9.
The physical nature of a crack tip is not absolutely sharp but blunt with finite curvature. In this paper, the effects of crack-tip shape on the stress and deformation fields ahead of blunted cracks in glassy polymers are numerically investigated under Mode I loading and small scale yielding conditions. An elastic–viscoplastic constitutive model accounting for the strain softening upon yield and then the subsequently strain hardening is adopted and two typical glassy polymers, one with strain hardening and the other with strain softening–rehardening are considered in analysis. It is shown that the profile of crack tip has obvious effect on the near-tip plastic field. The size of near-tip plastic zone reduces with the increase of curvature radius of crack tip, while the plastic strain rate and the stresses near crack tip enhance obviously for two typical polymers. Also, the plastic energy dissipation behavior near cracks with different curvatures is discussed for both materials.  相似文献   

10.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

11.
This paper deals with strain field near a crack tip in a rubber-like material under plane strain condition. The constitutive relation adopted here is valid for both small and large strain. The asymptotic equations are derived for a shrinking sector and expanding sector. The closed mathematic solution is obtained for the latter while a numerical solution is found for the former. By connecting deformation of the two sectors, the crack tip field character is found.  相似文献   

12.
本文分别采用激光和白光DSCM(数字散斑相关测量)方法对一种新型各向异性核工业石墨的裂纹尖端位移、应变场进行了实验研究,两种方法都取得了较好的结果。考虑核工业石墨制备过程形成的各向异性特点,本文构建了三维各向异性有限元模型,采用奇异单元,计算模拟石墨裂纹尖端的变形和应力场,通过对实验结果和有限元计算结果的比较可以发现两者具有相近的趋势。  相似文献   

13.
The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.  相似文献   

14.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing an elliptic crack is considered. It is assumed that the body is under an external magnetic field perpendicular to the crack plane. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the elliptic crack are studied. Formulas are given for the stress intensity factors for the force and magnetic fields near the crack tip  相似文献   

15.
应用云纹干涉法测量力电耦合作用下铁电陶瓷的破坏行为   总被引:1,自引:0,他引:1  
本文采用云纹干涉系统对的电陶瓷在力电耦合载荷作用下裂纹尖端的力学行为进行全场实时非接触动态细观测量,采用三点弯实验获取裂纹尖端区域在力电耦合作用下与电场集中有关的电致伸缩位移场,应变场,通过分析实验取得的云纹图得到了裂尖区域的位移场,应变场,发现裂尖区域就变随着与裂尖距离的增加衰减的速率比没有电场作用下的理论计算结果要快。  相似文献   

16.
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.  相似文献   

17.
Analyzed in this work is the elastostatic field near a crack tip in a rubber-like material. Asymptotic equations for a crack opened symmetrically about its plane are derived from assumed forms of the strain energy density and constitutive relation that applies to large and finite strain and remains valid even when the strain tends to infinity in the limit. Near field solutions are obtained in regions that decreases and increases in size as the crack tip is approached. Their singular character depends on the constitutive parameters and is evaluated numerically.  相似文献   

18.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

19.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

20.
三点弯曲试样动态应力强度因子计算研究   总被引:2,自引:0,他引:2  
利用Hopkinson压杆对三点弯曲试样进行冲击加载,采集了垂直裂纹面距裂尖2mm和与裂纹面成60°距裂尖5mm处的应变信号。根据裂尖附近测试的应变信号计算试样的动态应力强度因子,并与有限元计算结果进行比较,结果表明由于裂尖有一段疲劳裂纹区,通过裂尖附近应变信号来计算动态应力强度因子时,如果裂尖位置确定不准及粘贴应变片位置不够准确对计算结果将带来很大影响。因此利用应变片法计算动态应力强度因子时,为了获得更准确的计算结果,在实验后应对试件裂纹面进行分析测量,重新确定裂尖位置,必要时需对应变片至裂尖距离进行修正后再计算动态应力强度因子值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号