首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We analyze the properties of the quasiparticle excitations of metallic antiferromagnetic states in a strongly correlated electron system. The study is based on dynamical mean field theory (DMFT) for the infinite dimensional Hubbard model with antiferromagnetic symmetry breaking. Self-consistent solutions of the DMFT equations are calculated using the numerical renormalization group (NRG). The low energy behavior in these results is then analyzed in terms of renormalized quasiparticles. The parameters for these quasiparticles are calculated directly from the NRG derived self-energy, and also from the low energy fixed point of the effective impurity model. From these the quasiparticle weight and the effective mass are deduced. We show that the main low energy features of the k-resolved spectral density can be understood in terms of the quasiparticle picture. We also find that Luttinger's theorem is satisfied for the total electron number in the doped antiferromagnetic state.  相似文献   

2.
We introduce a method that allows the evaluation of general expressions for the spectral functions of the one-dimensional Hubbard model for all values of the on-site electronic repulsion U. The spectral weights are expressed in terms of pseudofermion operators such that the spectral functions can be written as a convolution of pseudofermion dynamical correlation functions. Our results are valid for all finite energy and momentum values and are used elsewhere in the study of the unusual finite-energy properties of quasi-one-dimensional compounds and the new quantum systems of ultra-cold fermionic atoms on an optical lattice.  相似文献   

3.
We compare different approximation schemes for investigating ferromagnetism in the periodic Anderson model. The use of several approximations allows for a detailed analysis of the implications of the respective methods, and also of the mechanisms driving the ferromagnetic transition. For the Kondo limit, our results confirm a previously proposed mechanism leading to ferromagnetic order, namely an RKKY exchange mediated via the formation of Kondo screening clouds in the conduction band. The contrary case is found in the intermediate-valence regime. Here, the bandshift correction ensuring a correct high-energy expansion of the self-energy is essential. Inclusion of damping effects reduces stability of the ferromagnetic phase. Received 5 June 2000 and Received in final form 3 August 2000  相似文献   

4.
A comprehensive study of the relationship between the electronic specific heat coefficient () and the temperature square coefficient (A) of the electrical resistivity for a single, cubic, heavy fermion alloy system, UPt5-xAux is presented. In this alloy system, whose low temperature properties are consistent with the Fermi-liquid behavior, varies by more than a factor of 10 while the corresponding A coefficient changes by a factor larger than 200. A tracks changes in fairly well, but , postulated to have a universal value for heavy fermions, is not constant and varies from about 10-6 (x = 0, 0.5) to 10-5 cm (mol K/mJ)2 (x > 1.1), thus from a value typical of transition metals to that characteristic of other heavy fermion compounds. We have found a correlation between and magnetic characteristics such as the paramagnetic Curie-Weiss temperature and the low temperature magnetic susceptibility divided by . Received 29 January 1999  相似文献   

5.
We present a detailed derivation of the Gutzwiller approximation for multi-band Hubbard models with density-density Coulomb interactions. For the one-band Hubbard model we introduce a mathematically well-defined formalism which is easily generalized to the multi-band case. In contrast to earlier attempts, our approach allows us to include inter-orbital hopping terms in the Hamiltonian. Received: 9 December 1997 / Revised and accepted: 6 March 1998  相似文献   

6.
We calculate the Green function in the t-t '-t -Jz model and analyze the deformation of the quantum Néel state in the presence of a moving hole. Solving the problem in a self-consistent Born approximation and using Reiter's wave function we have found various spin correlation functions. We show that the different sign of hopping elements between the hole- and electron-doped system of high- cuprates is responsible for the sharp difference of the polaron structure between the two systems with antiferromagnetism stabilized in the electron-doped case by carriers moving mainly on one sublattice. Received 11 January 2000  相似文献   

7.
We consider the one-dimensional t - J model, which consists of electrons with spin S on a lattice with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t. Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson model in the limit), which interacts with the correlated conduction states of the host. The lattice model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lattice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field. The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling. The impurity can localize up to one itinerant electron and has in general mixed valent properties. Groundstate properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity. Received: 31 December 1997 / Accepted: 17 March 1998  相似文献   

8.
Using the numerical renormalization group method, the dependences on temperature of the magnetic susceptibility χ(T) and specific heat C(T) are obtained for the single-impurity Anderson model with inclusion of d-f the Coulomb interaction. It is shown that the exciton effects caused by this effect (charge fluctuations) can significantly change the behaviour of C(T) in comparison with the standard Anderson model at moderately low temperatures, whereas the behaviour of χ(T) remains nearly universal. The ground-state and temperature-dependent renormalizations of the effective hybridization parameter and f-level position caused by the d-f interaction are calculated, and satisfactory agreement with the Hartree-Fock approximation is derived.  相似文献   

9.
A precursor effect on the Fermi surface in the two-dimensional Hubbard model at finite temperatures near the antiferromagnetic instability is studied using three different itinerant approaches: the second order perturbation theory, the paramagnon theory (PT), and the two-particle self-consistent (TPSC) approach. In general, at finite temperature, the Fermi surface of the interacting electron systems is not sharply defined due to the broadening effects of the self-energy. In order to take account of those effects we consider the single-particle spectral function A(, 0) at the Fermi level, to describe the counterpart of the Fermi surface at T = 0. We find that the Fermi surface is destroyed close to the pseudogap regime due to the spin-fluctuation effects in both PT and TPSC approaches. Moreover, the top of the effective valence band is located around = (π/2,π/2) in agreement with earlier investigations on the single-hole motion in the antiferromagnetic background. A crossover behavior from the Fermi-liquid regime to the pseudogap regime is observed in the electron concentration dependence of the spectral function and the self-energy. Received 8 September 2000 and Received in final form 20 December 2000  相似文献   

10.
The Kondo divergences owing to interaction of current carriers with local moments in highly correlated electron systems are considered within the Hubbard and s-d exchange models with infinitely strong on-site interaction, the many-electron Hubbard representation being used. The picture of density of states containing a peak at the Fermi level is obtained. Various forms of the self-consistent approximation are used. The problem of the violation of analytical properties of the Green's function is discussed. Smearing of the “Kondo” peak owing to spin dynamics and finite temperatures is investigated. Received 25 November 1999 and Received in final form 31 January 2000  相似文献   

11.
We apply a diagrammatic expansion method around the atomic limit () for the U-t-t ' Hubbard model at half filling and finite temperature by means of a continued fraction representation of the one-particle Green's function. From the analysis of the spectral function we find an energy dispersion relation with a modulation of the energy gap in the insulating phase. This anisotropy is compared with experimental ARPES results on insulating cuprates. Received 18 May 2000 and Received in final form 9 August 2000  相似文献   

12.
We present measurements in the YbCu5-xAlx series, down to the 50 mK range, using 170Yb M?ssbauer absorption spectroscopy and magnetisation measurements. In this series, the hybridisation between the Yb 4 f electrons and the conduction electrons is known to decrease as the Al content x increases. We apply the variational solution of the impurity Kondo problem to the interpretation of our data. We show that the Kondo temperature can be derived from the measured 4 f quadrupole moment and, for the magnetically ordered compounds (), we obtain the exchange energy as a function of the Al content. Our findings are in general agreement with Doniach's model describing the onset of magnetic ordering according to the relative values of the Kondo and exchange energy scales. Received 16 April 1998  相似文献   

13.
Recently we have shown that a one-parameter scaling, , describes the physical behavior of several heavy fermions in a region of their phase diagram. In this paper we fully characterize this region, obtaining the uniform susceptibility, the resistivity and the specific heat in terms of the coherence temperature . This allows for an explicit evaluation of the Wilson and the Kadowaki-Woods ratios in this regime. These quantities turn out to be independent of the distance to the quantum critical point (QCP). The theory of the one-parameter scaling corresponds to a local interacting model. Although spatial correlations are irrelevant in this case, time fluctuations are critically correlated as a consequence of the quantum character of the transition. Received 23 December 1998 and Received in final form 10 June 1999  相似文献   

14.
15.
The Mott metal-insulator transition in the two-band Hubbard model in infinite dimensions is studied by using the linearized dynamical mean-field theory recently developed by Bulla and Potthoff. The phase boundary of the metal-insulator transition is obtained analytically as a function of the on-site Coulomb interaction at the d-orbital, the charge-transfer energy between the d- and p-orbitals and the hopping integrals between p-d, d-d and p-p orbitals. The result is in good agreement with the numerical results obtained from the exact diagonalization method. Received 5 October 2000 and Received in final form 8 December 2000  相似文献   

16.
We study the one-dimensional Holstein model of spinless fermions interacting with dispersion-less phonons by using a recently developed projector-based renormalization method (PRM). At half-filling the system shows a metal-insulator transition to a Peierls distorted state at a critical electron-phonon coupling where both phases are described within the same theoretical framework. The transition is accompanied by a phonon softening at the Brillouin zone boundary and a gap in the electronic spectrum. For different filling, the phonon softening appears away from the Brillouin zone boundary and thus reflects a different type of broken symmetry state.  相似文献   

17.
We develop a Non-Crossing Approximation (NCA) for the effective cluster problem of the recently developed Dynamical Cluster Approximation (DCA). The DCA technique includes short-ranged correlations by mapping the lattice problem onto a self-consistently embedded periodic cluster of size . It is a fully causal and systematic approximation to the full lattice problem, with corrections in two dimensions. The NCA we develop is a systematic approximation with corrections . The method will be discussed in detail and results for the one-particle properties of the Hubbard model are shown. Near half filling, the spectra display pronounced features including a pseudogap and non-Fermi-liquid behavior due to short-ranged antiferromagnetic correlations. Received 16 June 1999  相似文献   

18.
The addition to the Hubbard Hamiltonian of a t' diagonal hopping term, which is considered to be material dependent for high-T c cuprate superconductors, is generally suggested to obtain a model capable to describe the physics of high-T c cuprate materials. In this line of thinking, the two-dimensional t-t'-U model has been studied by means of the Composite Operator Method, which allows to determine the dynamics in a fully self-consistent way by use of symmetry requirements, as the ones coming from the Pauli principle. At first, some local quantities have been calculated to be compared with quantum Monte Carlo data. Then, the structure of the energy bands, the shape of the Fermi surface and the position of the van Hove singularity have been computed as functions of the model parameters and studied by the light of the available experimental data. The results of our study show that there exists two sets of parameters that allows the model to describe the relevant features of the 1-layer compounds Nd2-xCexCuO4 and La2-xSrxCuO4. On the other hand, for the 2-layer compound YBa2Cu3O 7 - δ is not possible to find a reasonable set of parameters which could reproduce the position of the van Hove singularity as predicted by ARPES experiments. Hence, it results questionable the existence of an unique model that could properly describe the variety of cuprate superconductors, as the two-dimensional t-t'-U model was thought to be. Received 29 March 2000 and Received in final form 10 August 2000  相似文献   

19.
We investigate polaron formation in a many-electron system in the presence of a local repulsion sufficiently strong to prevent local-bipolaron formation. Specifically, we consider a Hubbard-Holstein model of interacting electrons coupled to dispersionless phonons of frequency . Numerically solving the model in a small one-dimensional cluster, we find that in the nearly adiabatic case , the necessary and sufficient condition for the polaronic regime to occur is that the energy gain in the atomic (i.e., extremely localized) regime overcomes the energy of the purely electronic system . In the antiadiabatic case, , polaron formation is instead driven by the condition of a large ionic displacement (g being the electron-phonon coupling). Dynamical properties of the model in the weak and moderately strong coupling regimes are also analyzed. Received 15 February 1999  相似文献   

20.
The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dynamical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are linearized, and the value for the critical Coulomb repulsion can be calculated analytically. For the symmetric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times the square root of the second moment of the free (U=0) density of states. This result is in good agreement with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The generalization to more complicated lattices is discussed. The “linearized DMFT” yields plausible results for the complete geometry dependence of the critical interaction. Received 6 May 1999 and Received in final form 2 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号