首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
《光谱实验室》2007,24(1):161
维克斯列尔出生于乌克兰的日托米尔,于1931年毕业于莫斯科动力学院。他在高能实验物理学及粒子加速器的发展上作出过重大贡献。1945年,他提出了一个设计回旋加速器的方法,这种加速器可以补偿高速粒子质量因相对论而发生的变化(速度很高时质量会有明显增加)所产生的影响,因而能使粒子获得较大的能量。几年后,麦克米伦也独立地提出了相同的方法。  相似文献   

2.
依据感应同步加速器验证实验中的相关数据,编写程序,实现了对感应同步加速中粒子纵向动力学过程的数值模拟。针对引起加速初期束团粒子大量丢失的多个可能因素进行了计算分析,明确了各因素对粒子丢失的影响方式和程度。以此为基础,提出了通过大幅减小加速腔体积并同时增加加速腔数量的方式来解决感应同步加速电压幅度实时调节困难的可行性建议,为感应同步加速器的性能提升提供了参考。  相似文献   

3.
目前我国《普通物理学》教材的几个通用版本[1],[2],[3],[4],在阐述回旋加速器时所用插图,都是把带电粒子在两个D形电极内加速回旋时的两相邻圆轨道半径增量△R,看成是恒量而绘制的.其实粒子圆轨道半径的增量△R不是恒量,而是随着粒子加速次数n的增加而递减的变量.因此它的加速运行轨道应如图所示. 设一质量为m的粒子,经第n次加速后的回旋半径和速度分别为Rn和vn,则两相邻圆轨道的半径增量△R应为式中B为回旋加速器给定的磁感强度,e为粒子电量.显然,(1)式右端的分子,正是粒子经第n次加速后的动量变化.它应为 th(。一,.l)。F’t。 (2式中…  相似文献   

4.
李志强  龚晖 《物理通报》2024,(2):142-144
从回旋加速器的基本原理出发,分析了限制粒子最大能量的几个因素,即D形盒半径和磁感应强度大小、加速极板之间的间距和加速电压、狭义相对论效应导致的粒子质量变化.并通过实际加速器的数据,分析和比较了在这几个因素独立影响下,粒子最大能量的数量级.  相似文献   

5.
武威和兰州重离子加速器使用回旋加速器作为其注入器。回旋加速器为该装置的同步加速器提供10μA的碳离子束流以满足其物理需求。而径向探针则是安装在回旋加速器内部实现束流流强和圈图测量的重要束诊元件。径向靶头上的束流信息经前端电子学拾取后会进一步进入数据采集系统,最终实现回旋加速器的束流流强和圈图测试。其中,径向探针的前端电子学采用皮安表,数据采集系统基于实时操作系统和FPGA技术。介绍了径向探针的机械结构设计,并分析了探头有无水冷结构的热结构;描述了控制系统软硬件架构,可以实现10 kHz的数据和位置信息的同步采集。最后,还介绍了探针机械和控制系统的实验室测试和验收标准以及在束测量结果。  相似文献   

6.
树华 《物理》2006,35(11):978-978
在过去的一个世纪中,用于核物理与粒子物理研究的加速器所加速的粒子能量从几千电子伏(keV)、几百万电子伏(MeV)直增加到几十亿电子伏(GeV).让这样高能量的粒子轰击物质可以生成瞬间的小规模的早期宇宙.如今,在短时间内把粒子加速到更高能量的研究工作已经迈出了值得注意的一步.  相似文献   

7.
回旋加速器中的空间电荷效应和束晕   总被引:2,自引:0,他引:2  
在考虑束团内粒子之间的空间电荷相互作用力的条件下,对日本理化研究所(RIKEN)现有的一台注入器(加速常数为K70的AVF型回旋加速器)中束团的演变过程进行了模拟计算.模拟结果表明,束团的形变、束晕现象同样发生在回旋加速器中,不过,其产生机制不同于直线加速器.它不是由共振和混沌引起,而是由于粒子的排斥运动和束团内粒子的涡流运动引起的.  相似文献   

8.
 磁铁设计对于等时性回旋加速器极为关键。磁场分布需要满足粒子等时性加速和粒子径向、轴向聚集要求,同时避免危险的横向共振。提出了一种计算机辅助的自动化磁铁设计、建模和修正的方法,该方法在基于Python混合编程的虚拟样机集成设计环境中实现。详细描述了利用3维电磁场仿真软件TOSCA和自主开发的粒子束跟踪软件PTP对磁铁的优化过程,并给出了一个16 MeV负氢紧凑型回旋加速器的主磁铁设计实例。  相似文献   

9.
 回旋加速器是现代物理实验室重要的实验设备之一,各种版本高中物理教材的磁场部分通常把回旋加速器单列一节。不少人在进行这一节教学后认为:由于洛伦兹力对带电粒子不做功,只有电场力做功;所以加速效果取决于D型盒之间的电压和加速次数,而与磁场的磁感应强度及D型盒半径大小无关。但是,这个结论是不正确的,具体分析如下。设粒子带电量为q、质量为m、最终离开D型盒的速度为vm,D型盒之间的电压为U,加速次数为n,由动能定理得nqU=(1/2)mv2m,即vm=2nqU/m。  相似文献   

10.
《光谱实验室》2007,24(1):35
切伦科夫1928年进沃罗涅日大学学习。从1930年起,在前苏联科学院物理研究所工作。他的重要发现是:亚原子粒子的能量越大,它运动得就越快:但它永远不能比真空中的光速快。然而,光通过水等透明媒质时,速度要比在真空中慢。这时,高能粒子通过这类媒质时,它的速度就可能超过光在该媒质中的速度。这样,它就会拖着一条发光的“尾巴”。  相似文献   

11.
一台新的治癌专用加速器HITFiL正在设计和建造中,其中一台同步加速器为其主加速器,以高紧凑性、高可靠性和低成本为设计目标。同步加速器的注入系统采用剥离注入方式,剥离注入与单圈注入方式相比能达到较高的注入效率,而其造价明显低于多圈注入加电子冷却的注入方式。治癌采用碳粒子束,从ECR离子源产生的C5+离子经过回旋加速器预加速后在同步加速器注入点处剥离成为C6+注入到环里。详细阐述了该注入系统的设计方案,并对整个注入过程进行了计算机模拟。在模拟过程中,对束流的注入效率、束流损失机制和粒子数增益进行了研究,得到了实空间和相空间的粒子分布和发射度增长趋势,得到了满足要求的束流流强。  相似文献   

12.
辐照用紧凑连续波电子加速器的物理设计   总被引:1,自引:0,他引:1       下载免费PDF全文
为适应工业电子加速器需求增多的现状,提出了一种新型的结构紧凑的连续波电子加速器,运行频率为180MHz。依靠置于加速腔外的多个偏转磁铁,使电子束多次穿越加速腔,从而得到持续的加速。设计过程中,用CST软件对谐振加速腔进行了优化,用Parmela软件模拟了束流的粒子动力学。粒子纵向稳定度和横向聚焦也通过模拟进行了分析和验证。结果显示:此种新型加速器能得到9MeV,100kW的稳定电子束流。  相似文献   

13.
《光谱实验室》2007,24(1):117-117
邮票N10是日本1990年为纪念仁科芳雄诞生100周年、日本第一台回旋加速器动转50周年和放射性同位素在日本应用50周年而发行的。仁科芳雄是长冈半太郎的学生,他建造了日本第一台回旋加速器,所用的是劳伦斯的图纸。日本的放射性同位素首先是在他这台回旋加速器上生产出来的。他在量子电动力学中也有贡献,有计算自由电子的康普顿散射截面的克莱因一仁科芳雄公式。仁科芳雄的理化研究所对日本科学的发展产生过很大的影响,大部分杰出的日本物理学家都和仁科芳雄学派有关系。  相似文献   

14.
HIRFL中的束流纵向运动   总被引:6,自引:4,他引:2       下载免费PDF全文
 对兰州重离子加速器的两台等时性回旋加速器中的束流纵向运动作了简单分析,主要介绍两条束运线上的几台聚束器的物理设计。超低能束运线SFC轴向注入线上的两台聚束器采用了线性聚束器,并提出了用半频聚束来提高两台回旋加速器的纵向匹配效率的新方法。低能束运线(BL1)上的聚束器采用多工作模式以解决加速粒子和能量范围宽的问题。  相似文献   

15.
兰州重离子加速器冷却储存环   总被引:2,自引:0,他引:2  
 兰州重离子加速器(HIRFL)由用作注入器的扇聚焦回旋加速器(SFC)和分离扇回旋加速器(主加速器SSC)组成,是加速中、低能重离子束流的回旋加速器系统.  相似文献   

16.
方守贤  梁岫如 《物理》1991,20(8):473-482
我国粒子加速器在80年代里有了相当大的发展.三大加速器建设工程的完成,标志着我国已具有了建造大型加速器的能力.粒子加速器技术在一些方面已达到了国际上80年代中期的水平,低能小加速器的应用出现了新的形势,一些相关的工业技术得到了相应的发展.当然,与国际上新技术、高技术日新月异的发展形势相比,我们仍然存在着很大的差距.本文试图纵观世界上粒子加速器的发展,分析我国粒子加速器所处的地位和今后的发展.  相似文献   

17.
1974年11月,丁肇中和里克特几乎同时宣布,他们的实验组各自在美国布鲁克海文实验室的质子同步加速器AGS和斯坦福直线加速器中心的正负电子对撞机SPEAR上,发现了一个能量约为31亿电子伏特的新粒子,并分别命名为J粒子和Ψ粒子,后来统一称为J/Ψ粒子。这一被誉为“十一月革命”的发现,使高能物理的研究迈进了一个新的境界。  相似文献   

18.
《物理》2017,(12)
<正>质子和离子治疗对于许多癌症,如身体深部的肿瘤,是优选的治疗方法。世界上提供这种治疗的约100台设备,都使用回旋加速器或同步回旋加速器将带电粒子加速到所需的能量。与这些圆形的机器相比,直线加速器(linacs)在治疗上具有一定的优势,但是除了一些设计上的困难之外,因体积庞大而很难安装在医院里。西欧核子中心(CERN)的Stefano Benedetti和他的同事们设计了第一台全直线的加速器,克服了体积  相似文献   

19.
紧凑型回旋加速器作为重离子医学专用装置同步加速器的注入器,其引出系统设计所用的磁场为TOSCA模型计算磁场。通过单粒子轨道计算确定引出系统的元件类型及基本参数;通过多粒子跟踪确定最终的元件参数和束流参数。为了提高引出效率,改善引出束流品质,在引出位置磁场梯度较大的位置,安放了一块C型磁铁,以改善此处的磁场梯度。同时,为了消除此C型磁铁对主磁场的影响,在此区域安放了一对线圈。计算结果表明引出系统的设计能够保证引出束流的强度和品质符合同步加速器的要求。  相似文献   

20.
《光谱实验室》2007,24(1):93
劳伦斯(E)的祖父是挪威移民。1925年,他在耶鲁大学获得物理学博士学位,自1927年起一直在加利福尼亚大学任教。20世纪20年代,核物理学的一个大难题是改进轰击原子核的方法。人们发明了各种加速装置,然而,最有用的加速器是劳伦斯发明的。他觉得,与其建立极大的电势以对带电粒子狠狠地“给上一脚”还不如使它们作回旋运动,而在每一转中给它们以轻轻一掌,同时使这些掌击不断地累积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号