首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.  相似文献   

2.
Insufficient supply to the developing brain of docosahexaenoic acid (22:6n3, DHA), or its omega-3 fatty acid precursors, results in replacement of DHA with docosapentaenoic acid (22:5n6, DPA), an omega-6 fatty acid that is lacking a double bond near the chain's methyl end. We investigated membranes of 1-stearoyl(d(35))-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl(d(35))-2-docosapentaenoyl-sn-glycero-3-phosphocholine by solid-state NMR, X-ray diffraction, and molecular dynamics simulations to determine if the loss of this double bond alters membrane physical properties. The low order parameters of polyunsaturated chains and the NMR relaxation data indicate that both DHA and DPA undergo rapid conformational transitions with correlation times of the order of nanoseconds at carbon atom C(2) and of picoseconds near the terminal methyl group. However, there are important differences between DHA- and DPA-containing lipids: the DHA chain with one additional double bond is more flexible at the methyl end and isomerizes with shorter correlation times. Furthermore, the stearic acid paired with the DHA in mixed-chain lipids has lower order, in particular in the middle of the chain near carbons C(10)(-)(12), indicating differences in the packing of hydrocarbon chains. Such differences are also reflected in the electron density profiles of the bilayers and in the simulation results. The DHA chain has a higher density near the lipid-water interface, whereas the density of the stearic acid chain is higher in the bilayer center. The loss of a single double bond from DHA to DPA results in a more even distribution of chain densities along the bilayer normal. We propose that the function of integral membrane proteins such as rhodopsin is sensitive to such a redistribution.  相似文献   

3.
Polyunsaturated phospholipids are known to be important with regard to the biological functions of essential fatty acids, for example, involving neural tissues such as the brain and retina. Here we have employed two complementary structural methods for the study of polyunsaturated bilayer lipids, viz. deuterium ((2)H) NMR spectroscopy and molecular dynamics (MD) computer simulations. Our research constitutes one of the first applications of all-atom MD simulations to polyunsaturated lipids containing docosahexaenoic acid (DHA; 22:6 cis-Delta(4,7,10,13,16,19)). Structural features of the highly unsaturated, mixed-chain phospholipid, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC), have been studied in the liquid-crystalline (L(alpha)) state and compared to the less unsaturated homolog, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The (2)H NMR spectra of polyunsaturated bilayers are dramatically different from those of less unsaturated phospholipid bilayers. We show how use of MD simulations can aid in interpreting the complex (2)H NMR spectra of polyunsaturated bilayers, in conjunction with electron density profiles determined from small-angle X-ray diffraction studies. This work clearly demonstrates preferred helical and angle-iron conformations of the polyunsaturated chains in liquid-crystalline bilayers, which favor chain extension while maintaining bilayer flexibility. The presence of relatively long, extended fatty acyl chains may be important for solvating the hydrophobic surfaces of integral membrane proteins, such as rhodopsin. In addition, the polyallylic DHA chains have a tendency to adopt back-bended (hairpin-like) structures, which increase the interfacial area per lipid. Finally, the material properties have been analyzed in terms of the response of the bilayer to mechanical stress. Simulated bilayers of phospholipids containing docosahexaenoic acid were less sensitive to the applied surface tension than were saturated phospholipids, possibly implying a decrease in membrane elasticity (area elastic modulus, bending rigidity). The above features distinguish DHA-containing lipids from saturated or monounsaturated lipids and may be important for their biological modes of action.  相似文献   

4.
Polyunsaturated lipids are an essential component of biological membranes, influencing order and dynamics of lipids, protein-lipid interaction, and membrane transport properties. To gain an atomic level picture of the impact of polyunsaturation on membrane properties, quantum mechanical (QM) and empirical force field based calculations have been undertaken. The QM calculations of the torsional energy surface for rotation about vinyl-methylene bonds reveal low barriers to rotation, indicating an intrinsic propensity toward flexibility. Based on QM and experimental data, empirical force field parameters were developed for polyunsaturated lipids and applied in a 16 ns molecular dynamics (MD) simulation of a 1-stearoyl-2-docosahexaenoyl-sn-glyerco-3-phosphocholine (SDPC) lipid bilayer. The simulation results are in good agreement with experimental data, suggesting an unusually high degree of conformational flexibility of polyunsaturated hydrocarbon chains in membranes. The detailed analysis of chain conformation and dynamics by simulations is aiding the interpretation of experimental data and is useful for understanding the unique role of polyunsaturated lipids in biological membranes. The complete force field is included as Supporting Information and is available from http://www.pharmacy.umaryland.edu/faculty/amackere/research.html.  相似文献   

5.
Recent NMR experiments and molecular dynamics simulations have indicated that rhodopsin is preferentially solvated by omega-3 fatty acids compared to saturated chains. However, to date no physical theory has been advanced to explain this phenomenon. The present work presents a novel thermodynamic explanation for this preferential solvation based on statistical analysis of 26,100 ns all-atom molecular dynamics simulations of rhodopsin in membranes rich in polyunsaturated chains. The results indicate that the preferential solvation by omega-3 chains is entropically driven; all chains experience an entropic penalty when associating with the protein, but the penalty is significantly larger for saturated chains.  相似文献   

6.
We present a 118-ns molecular dynamics simulation of rhodopsin embedded in a bilayer composed of a 2:2:1 mixture of 1-stearoyl-2-docosahexaenoyl-phosphatidylcholine (SDPC), 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine (SDPE), and cholesterol, respectively. The simulation demonstrates that the protein breaks the lateral and transverse symmetry of the bilayer. Lipids near the protein preferentially reorient such that their unsaturated chains interact with the protein, while the distribution of cholesterol in the membrane complements the variations in rhodopsin's transverse profile. The latter phenomenon suggests a molecular-level mechanism for the experimental finding that cholesterol stabilizes the native dark-adapted state of rhodopsin without binding directly to the protein.  相似文献   

7.
Polyunsaturated lipids in cellular membranes are known to play key roles in such diverse biological processes as vision, neuronal signaling, and apoptosis. One hypothesis is that polyunsaturated lipids are involved in second messenger functions in biological signaling. Another current hypothesis affirms that the functional role of polyunsaturated lipids relies on their ability to modulate physical properties of the lipid bilayer. The present research has employed solid-state 2H NMR spectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position. Measurements have been performed on fluid (L(alpha))-state multilamellar dispersions as a function of temperature for saturated acyl chain lengths of n = 12, 14, 16, and 18 carbons. The saturated sn-1 chains are therefore used as an intrinsic probe with site-specific resolution of the polyunsaturated bilayer structure. The 2H NMR order parameters as a function of acyl position (order profiles) have been analyzed using a mean-torque potential model for the chain segments, and the results are discussed in comparison with the homologous series of disaturated lipid bilayers. At a given absolute temperature, as the sn-1 acyl length adjacent to the sn-2 DHA chain is greater, the order of the initial chain segments increases, whereas that of the end segments decreases, in marked contrast with the corresponding disaturated series. For the latter, the order of the end segments is practically constant with acyl length, thus revealing a universal chain packing profile. We find that the DHA-containing series, while more complex, is still characterized by a universal chain packing profile, which is shifted relative to the homologous saturated series. Moreover, we show how introduction of DHA chains translates the order profile along the saturated chains, making more disordered states accessible within the bilayer central region. As a result, the area per lipid headgroup is increased as compared to disaturated bilayers. The systematic analysis of the 2H NMR data provides a basis for studies of lipid interactions with integral membrane proteins, for instance in relation to characteristic biological functions of highly unsaturated lipid membranes.  相似文献   

8.
通过分子动力学模拟的方法,模拟了1-棕榈酰基-2-油酰基磷脂酰乙醇胺(1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine,POPE)生物膜在添加胚胎发育晚期丰富蛋白(Late embryogenesis abundant proteins,LEA蛋白)特征重复片段(LEA-motif)前后两种体系在低温下的干燥过程,对比分析了干燥过程中两种体系在POPE生物膜结构、扩散系数、侧链有序性及分子间氢键数目的变化,从微观角度揭示了POPE生物膜因干燥失水导致的结构变化以及添加LEA-motif之后LEA-motif与POPE生物膜的相互作用. 结果表明,LEA-motif在脱水干燥过程中能够有效地稳定膜的结构,从而保护生物材料的生物活性.  相似文献   

9.
通过分子动力学模拟的方法, 模拟了1-棕榈酰基-2-油酰基磷脂酰乙醇胺(1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, POPE)生物膜在添加胚胎发育晚期丰富蛋白(Late embryogenesis abundant proteins, LEA蛋白)特征重复片段(LEA-motif)前后两种体系在低温下的干燥过程, 对比分析了干燥过程中两种体系在POPE生物膜结构、 扩散系数、 侧链有序性及分子间氢键数目的变化, 从微观角度揭示了POPE生物膜因干燥失水导致的结构变化以及添加LEA-motif之后LEA-motif与POPE生物膜的相互作用. 结果表明, LEA-motif在脱水干燥过程中能够有效地稳定膜的结构, 从而保护生物材料的生物活性.  相似文献   

10.
Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.  相似文献   

11.
We investigate the effect of specific conformations of double-bond segments in highly polyunsaturated acyl chains on the deuterium (2)H NMR order parameters of a fully hydrated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer. The system is analyzed by performing a molecular dynamics simulation study at ambient conditions in the fluid lamellar phase. By separately calculating the different partial contributions to the total order parameter profiles measurable experimentally, we are able to get insights into the molecular origin of earlier experimental and theoretical observations. The effect of the position of the different conformations of double-bond segments along the polyunsaturated acyl chain is also examined. As in experiments performed in a series of lipid bilayers with an increasing number of cis double bonds per lipid molecule [Holte, L. L., et al. Biophys. J. 1995, 68, 2396], we find that unsaturations influence mainly the order of the bottom half of the saturated chain. Specific conformations of the polyunsaturated chain close to the lipid headgroups have a distinct effect on the order of the bottom half of the saturated chain and on the top half of the polyunsaturated chain. Our results indicate that for SDPC the conformation of the region of the polyunsaturated chain located between the first three cis double bonds is responsible for the major effects on the orientational order of both the saturated and the polyunsaturated chains.  相似文献   

12.
CHARMM‐GUI Membrane Builder, http://www.charmm‐gui.org/input/membrane , is a web‐based user interface designed to interactively build all‐atom protein/membrane or membrane‐only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance‐based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM‐GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Ionizable amino acid side chains play important roles in membrane protein structure and function, including the activation of voltage-gated ion channels, where it has been previously suggested that charged side chains may move through the hydrocarbon core of the membrane. However, all-atom molecular dynamics simulations have demonstrated large free energy barriers for such lipid-exposed motions. These simulations have also revealed that the membrane will deform due to the presence of a charged side chain, leading to a complex solvation microenvironment for which empirical force fields were not specifically parametrized. We have tested the ability of the all-atom CHARMM, Drude polarizable CHARMM, and a recent implementation of a coarse-grained force field to measure the thermodynamics of arginine-membrane interactions as a function of protonation state. We have employed model systems to attempt to match experimental bulk partitioning and quantum mechanical interactions within the membrane and found that free energy profiles from nonpolarizable and polarizable CHARMM simulations are accurate to within 1-2 kcal/mol. In contrast, the coarse-grained simulations failed to reproduce the same membrane deformations, exhibit interactions that are an order of magnitude too small, and thus, have incorrect free energy profiles. These results illustrate the need for careful parametrization of coarse-grained force fields and demonstrate the utility of atomistic molecular dynamics for providing quantitative thermodynamic and mechanistic analysis of protein-lipid interactions.  相似文献   

14.
We consider the properties of free pyrene probes inside gel- and fluidlike phospholipid membranes and unravel their influence on membrane properties. For this purpose, we employ atomic-scale molecular dynamics simulations at several temperatures for varying pyrene concentrations. Molecular dynamics simulations show that free pyrene molecules prefer to be located in the hydrophobic acyl chain region close to the glycerol group of lipid molecules. Their orientation is shown to depend on the phase of the membrane. In the fluid phase, pyrenes favor orientations where they are standing upright in parallel to the membrane normal, while, in the gel phase, the orientation is affected by the tilt of lipid acyl chains. Pyrenes are found to locally perturb membrane structure, while the nature of perturbations in the gel and fluid phases is completely different. In the gel phase, pyrenes break the local packing of lipids and decrease the ordering of lipid acyl chains around them, while, in the fluid phase, pyrenes increase the ordering of nearby acyl chains, thus having an opposite effect. Interestingly, this proposes a similarity to effects induced by cholesterol on structural membrane properties above and below the gel-fluid transition temperature. Further studies express a view that the orientational ordering of pyrene is not a particularly good measure of the acyl chain ordering of lipids. While pyrene ordering provides the correct qualitative behavior of acyl chain ordering in the fluid phase, its capability to predict the correct temperature dependence is limited.  相似文献   

15.
Lipid-modified membrane-binding proteins are essential in signal transduction events of the cell, a typical example being the GTPase ras. Recently, membrane binding of a doubly lipid-modified heptapeptide from the C-terminus of the human N-ras protein was studied by spectroscopic techniques. It was found that membrane binding is mainly due to lipid chain insertion, but it is also favored by interactions between apolar side chains and the hydrophobic region of the membrane. Here, 10 explicit solvent molecular dynamics simulations for a total time of about 150 ns are used to investigate the atomic details of the peptide-membrane association. The 16:0 peptide lipid chains are more mobile than the 14:0 phospholipid chains, which is in agreement with (2)H NMR experiments. Peptide-lipid and peptide-solvent interactions, backbone and side-chain distributions, as well as the effects of lipidated peptide insertion onto the structure, and dynamics of a 1,2-dimyristoylglycero-3-phosphocholine bilayer are described. The simulation results validate the structural model proposed by the analysis of spectroscopic data and highlight the main aspects of the insertion mechanism. The peptide in the membrane is rather rigid over the simulation time scale of about 10 ns, but different partially extended conformations devoid of backbone hydrogen bonds are observed in different trajectories.  相似文献   

16.
In the present study, a model for the human gonadotropin-releasing hormone receptor embedded in an explicit lipid bilayer was developed. The final conformation was obtained by extensive molecular dynamics simulations of a homology model based on the bovine rhodopsin crystal structure. The analysis of the receptor structure allowed us to detect a number of specific contacts between different amino acid residues, as well as water- and lipid-mediated interactions. These interactions were stable in six additional independent 35 ns long simulations at 310 and 323 K, which used the refined model as the starting structure. All loops, particularly the extracellular loop 2 and the intracellular loop 3, exhibited high fluctuations, whereas the transmembrane helices were more static. Although other models of this receptor have been previously developed, none of them have been subjected to extensive molecular dynamics simulations, and no other three-dimensional structure is publicly available. Our results suggest that the presence of ions as well as explicit solvent and lipid molecules are critical for the structure of membrane protein models, and that molecular dynamics simulations are certainly useful for their refinement.  相似文献   

17.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   

18.
Two fully hydrated pure-species phospholipids bilayers, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-phosphorylcholine (DOPC), in the fluid phase and explicit solvent have been studied using molecular dynamics simulation. Atom interactions were modeled using recently developed force fields based on AMBER with full atomistic details. Several representative liquid phase properties for the structure and dynamics of lipids with different length of hydrocarbon chains and different level of saturation have been reproduced without artificially biasing the system in order to match experimental data. In particular, as the new GAFF (General Amber Force Field) has not been explicitly developed to reproduce lipid characteristics and is naturally compatible with standard AMBER nucleic acids and proteins parameters, it is here proven a promising tool to study mixed lipid-protein processes as protein activity dependence on membrane composition, permeation of solute across membranes, and other cellular processes.  相似文献   

19.
The lipid membranes found in archaea have high bilayer stability and low permeability. The molecular structure of their constituent lipids is characterized by ether-linked, branched hydrophobic chains, whereas the conventional lipids obtained from eukaryotic or eubacterial sources have ester linked straight chains. In order to elucidate the influence of the ether linkage, instead of an ester one, on the physical properties of the lipid bilayers, we have carried out comparative 10 ns molecular dynamics simulations of diphytanyl phosphatidylcholine (ether-DPhPC) and diphytanoyl phosphatidylcholine (ester-DPhPC) bilayers in water, respectively. We analyze bilayer structures, hydration of the lipids, membrane dipole potentials, and free energy profiles of water and oxygen across the bilayers. We observe that the membrane dipole potential for the ether-DPhPC bilayer, which arises mainly from the ether linkage, is about half of that of the ester-DPhPC. The calculated free energy barrier for a water molecule in the ether-DPhPC bilayer system is slightly higher than that in the ester-DPhPC counterpart, which is in accord with experimental data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号