首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The electron-stimulated desorption (ESD) yields and energy distributions for potassium (K) and cesium (Cs) atoms have been measured from K and Cs layers adsorbed at 300 K on oxidized molybdenum surfaces with various degrees of oxidation. The measurements were carried out using a time-of-flight method and surface ionization detector. The ESD appearance threshold for K and Cs atoms is independent of the molybdenum oxidation state and is close to the oxygen 2s level ionization energy of 25 eV. Additional thresholds for both K and Cs atoms are observed at about 40 and 70 eV in ESD from layers adsorbed on an oxygen monolayer-covered molybdenum surface; they are associated with resonance processes involving Mo 4p and 4s excitations. The ESD energy distributions for K and Cs atoms consist of single peaks. The most probable kinetic energy of atoms decreases in going from cesium to potassium and with increasing adsorbed metal concentration; it lies in the energy range around 0.35 eV. The K and Cs atom ESD energy distributions from adlayers on an oxygen monolayer-covered molybdenum surface are extended toward very low kinetic energies. The data can be interpreted by means of the Auger stimulated desorption model, in which neutralization of adsorbed alkali-metal ions occurs after filling of holes created by incident electrons in the O 2s, Mo 4s or Mo 4p levels.  相似文献   

2.
The yield and energy distributions of lithium atoms upon electron-stimulated desorption from lithium layers adsorbed on the molybdenum surface coated with an oxygen monolayer have been measured as functions of the impact electron energy and lithium coverage. The measurements are performed using the time-of-flight technique and a surface ionization detector. The threshold of the electron-stimulated desorption of lithium atoms is equal to 25 eV, which is close to the ionization energy of the O 2s level. Above a threshold of 25 eV, the yield of lithium atoms linearly increases with an increase in the lithium coverage. In the coverage range from 0 to 0.45, an additional threshold is observed at an energy of 55 eV. This threshold can be associated with the ionization energy of the Li 1s level. At the electron energies above a threshold of 55 eV, as the coverage increases, the yield of lithium atoms passes through a maximum at a coverage of about 0.1. Additional thresholds for the electron-stimulated desorption of the lithium atoms are observed at electron energies of 40 and 70 eV for the coverages larger than 0.6 and 0.75, respectively. These thresholds correlate with the ionization energies of the Mo 4s and Mo 4p levels. Relatively broad peaks in the range of these thresholds indicate the resonance excitation of the bond and can be explained by the excitation of electrons toward the band of free states above the Fermi level. The mean kinetic energy of the lithium atoms is equal to several tenths of an electronvolt. At electron energies less than 55 eV, the energy distributions of lithium atoms involve one peak with a maximum at about 0.18 eV. For the lithium coverages less than 0.45 and electron energies higher than 55 eV, the second peak with a maximum at 0.25 eV appears in the energy distributions of the lithium atoms. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model, in which the adsorbed lithium ions are neutralized after filling holes inside inner shells of the substrate and lithium atoms.  相似文献   

3.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

4.
The yield of europium atoms in electron-stimulated desorption from Eu layers adsorbed on the surface of oxidized tungsten was studied with a surface-ionization detector as a function of the incident-electron energy, surface coverage by europium, and degree of tungsten oxidation. The yield of Eu atoms measured as a function of electron energy exhibits a distinct resonant character with peaks at electron energies corresponding to europium and tungsten core-level ionization energies. The peaks associated with the europium ionization reach a maximum intensity at europium coverages less than 0.1 and decrease subsequently to zero with increasing coverage, while the peaks due to tungsten ionization pass through the maximum intensity at a monolayer europium coverage. The coverage corresponding to the maximum europium atom yield grows with increasing tungsten oxidation. The results obtained are accounted for by the formation of the europium and tungsten core excitons. In the first case, the particles desorb in the reverse motion toward the surface of the oxidized tungsten; in the second, they desorb as a result of repulsion between the tungsten core exciton and the EuO molecule.  相似文献   

5.
An analysis of the yield q of europium atoms is made, and scenarios of electron-stimulated desorption are put forward. Expressions are obtained for the dependence of q on the coverage of oxidized tungsten by europium atoms.  相似文献   

6.
The yield and energy distribution of Cs atoms from cesium layers adsorbed on germanium-coated tungsten were measured, using the time-of-flight technique with a surface-ionization-based detector, as a function of the energy of bombarding electrons, germanium film thickness, the amount of adsorbed cesium, and substrate temperature. The threshold for the appearance of Cs atoms is ~30 eV, which correlates well with the germanium 3d-level ionization energy. As the electron energy increases, the Cs atom yield passes through a broad maximum at ~120 eV. For germanium film thicknesses from 0.5 to 2 monolayers, resonance Cs yield peaks were observed at electron energies of 50 and 80 eV, which can be related to the tungsten 5p and 5s core-level ionization energies. As the cesium coverage increases, the Cs atom yield passes through a flat maximum at monolayer coverage. The energy distribution of Cs atoms follows a bell-shaped curve. With increasing cesium coverage, this curve shifts to higher energies for thin germanium films and to lower energies for thick films. The Cs energy distribution measured at a substrate temperature T = 160 K exhibits two bell-shaped peaks, namely, a narrow peak with a maximum at ~0.35 eV, associated with tungsten core-level excitation, and a broad peak with a maximum at ~0.5 eV, deriving from the excitation of the germanium 3d core level. The results obtained can be described within a model of Auger-stimulated desorption.  相似文献   

7.
Physics of the Solid State - The yield and energy distributions of cesium atoms escaping in electron-stimulated desorption (ESD) from cesium layers adsorbed on tungsten coated by a gold film have...  相似文献   

8.
The nature of electron-stimulated desorption of europium atoms Eu0 at low incident electron energies E e (~30 eV) and the specific features of the dependence of the yield of europium atoms Eu0 on their concentration on the surface of oxidized tungsten are discussed. The crucial stage is found to be the primary event of vacancy creation in the inner 5p shell of the europium adatom. As follows from estimates, only the first of the two possible ionization scenarios (intratomic electron transfer to the outer shell of the Eu adatom or ejection of the knocked-out electron into vacuum) results in Eu0 desorption. The concentration threshold of the Eu0 yield is determined.  相似文献   

9.
The yield of sodium atoms and energy distribution upon electron-stimulated desorption from sodium layers adsorbed on tungsten coated with a germanium thin film are measured under variations in the electron energy, the sodium coverage, and the surface temperature by the time-of-flight method with the use of a surface ionization detector. It is revealed that the electron-stimulated desorption of sodium atoms occurs via three channels, namely, a channel involving ionization of adsorbed sodium; the most efficient channel, which is produced by the germanium ionization; and a channel associated with the formation of tungsten excitons, which brings about desorption of NaGe molecules.  相似文献   

10.
The yield of europium and samarium atoms in electron-stimulated desorption from layers of rare-earth metals (REMs) adsorbed on the surface of oxidized tungsten has been measured as a function of the incident electron energy, surface coverage by REMs, degree of tungsten oxidation, and substrate temperature. The measurements were performed using the time-of-flight method with a surface-ionization-based detector within the substrate temperature interval 140–600 K. The yield studied as a function of electron energy has a resonance character. Overlapping resonance peaks of Sm atoms are observed at electron energies of 34 and 46 eV, and those of Eu atoms, at 36 and 41 eV. These energies correlate well with the REM 5p and 5s core-level excitation energies. The REM yield is a complex function of the REM coverage and substrate temperature. The peaks due to REM atoms are seen at low REM coverages only, and their intensity usually passes through a maximum with increasing coverage and substrate temperature. The concentration dependence of the REM atom yield is affected by the deposition of slow Ba+ ions, but only if they are deposited after the REM adsorption. At higher REM coverages, additional peaks are observed at electron energies of 42, 54, and 84 eV, which originate from excitation of the 5p and 5s tungsten levels and result from desorption of SmO and EuO molecules. The temperature dependence of the intensity of these peaks is explained to be due to the order-disorder phase transition. The desorption of REM atoms is the result of their reversed motion through the adsorbed REM layer, and the SmO and EuO molecules desorb due to the formation of an antibonding state between the REM oxide molecules and the tungsten ions.  相似文献   

11.
The changes in the surface composition of UV-46, VK 94-1, and VK 100-1 alumina ceramics and leucosapphire under (1–2)-keV electron irradiation with doses D up to 4 × 1020 electrons cm?2 have been investigated by low-energy electron spectroscopy. The effect of the bulk composition of the ceramics and some other factors on the surface oxides destruction rate is shown.  相似文献   

12.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

13.
The yield and energy distributions of sodium atoms upon their electron-stimulated desorption from sodium layers adsorbed on tungsten coated by a gold film are measured for the first time as functions of the energy of bombarding electrons, the thickness of the gold film, and the amount of adsorbed sodium. The electron-stimulated desorption channel associated with the excitation of core levels of gold is revealed for the first time.  相似文献   

14.
It has been shown that deposition of Sm atoms on W(100) surface coated by several monolayers of gold and cesium affects noticeably the yield of Cs atoms in electron-stimulated desorption (ESD) from this surface. The measurements have been performed by the time-of-flight method with a surface-ionization detector. The paper reports on the first observation of ESD of Sm atoms from the tungsten surface coated by layers of gold and cesium. The ESD threshold for Sm atoms, E e = 57 eV, coincides with that for Cs atoms and corresponds to the energy of the Au 5p 3/2 core level. The dependence of the ESD yield of Sm atoms on the bombarding electron energy E e follows a resonance pattern in the form of a narrow peak located in the range 57 ≤ E e ≤ 66 eV. Deposition of Sm atoms at room temperature (~300 K) reduces (by a factor of about two) the ESD yield of Cs atoms for 600 s, and deposition of Sm atoms at 160 K reduces the ESD of Cs atoms down to zero already for 270 s. This difference finds explanation in the study of the change the structure of the top layer of the (Au + Cs)/W surface coating undergoes under cooling of the surface from 300 to 160 K.  相似文献   

15.
This paper reports on the first measurement of the yield and energy distributions of sodium atoms in electron-stimulated desorption at T = 160 K from sodium layers adsorbed on tungsten with a gold film atop. The Na atom yield has a resonant pattern with an appearance threshold of 30 eV, which can be attributed to exciton excitation in the Na 2p level. The Na yield is associated with the formation of a semiconducting Na x Au y film at T ∼ 300 K and sodium and gold coverages in excess of one monolayer. Sodium atoms are desorbed through Auger neutralization of Na2+ ions in their reverse motion toward the surface and is limited by the resonant ionization of Na atoms as they pass through the adsorbed layer of Na+ ions. The energy distributions of Na atoms are bell shaped with a maximum at about 0.56 eV.  相似文献   

16.
This paper reports on a continuation of the investigation of electron-stimulated Cs-atom desorption from a tungsten surface on which cesium and gold films had been adsorbed at T = 300 K. Earlier studies revealed that Cs atoms start to desorb only after more than one monolayer of gold and more than one monolayer of cesium had been deposited on the tungsten surface. In this case, a coating consisting of a gold adlayer on tungsten, a CsAu compound possessing semiconducting properties, and a cesium monolayer capping CsAu (Cs/CsAu/Au/W) is formed on the tungsten surface at 300 K. The yield of atoms from this system exhibits a resonant dependence on the incident electron energy E e , with an appearance threshold of 57 eV and a maximum at 64 eV. In this case, Cs atoms desorb in two channels, with one of them involving Cs desorption out of the cesium monolayer, and the other, from the CsAu monolayer. The Cs yield at E e = 64 eV has been investigated in both desorption channels, with an additional cesium coating deposited on the already formed Cs/CsAu/Au/W layered system, as well as of the effect annealing produces on the yield and energy distributions of Cs atoms. It has been demonstrated that Cs atoms evaporated at 300 K on a layered coating with a cesium monolayer atop the CsAu layer on tungsten capped with a gold adlayer, rather than reflected from the cesium monolayer or adsorbing on it, penetrate through the cesium monolayer into the bulk of CsAu even with one CsAu layer present. The desorption yield does not vary with increasing cesium concentration at 300 K, but falls off gradually at 160 K. Annealing within the temperature range 320 K ≤ T H ≤ 400 K destroys the cesium monolayer and the one-layer CsAu coating, but the multilayer CsAu compound does not break up in this temperature range even after evaporation of the cesium monolayer. It is shown that Cs atoms escape from the multilayer CsAu compound primarily out of the top CsAu layer.  相似文献   

17.
Desorption of K atoms by laser-excitation of surface plasmons in small K particles is reported. The desorption rate has been measured for different laser wavelengths and particle sizes. Time-of-flight measurements reveal a kinetic energy of the desorbed atoms of Ekin=0.13(3) eV. From the experimental data it is concluded that the desorption mechanism is non-thermal in nature. Comparison of the results reported here with our earlier work on Na desorption is made.  相似文献   

18.
An analysis is made of experimental data on the dependence of the energy distributions of Li, Na, and Cs atoms emitted in electron-stimulated desorption on their concentration on the surface of oxidized tungsten and molybdenum substrates.  相似文献   

19.
20.
《Applied Surface Science》1987,28(3):235-246
Emission of neutral oxygen atoms from an oxygen-charged polycrystalline Ag wire has been examined by using electron-stimulated desorption (ESD) in conjunction with threshold ionization detection (appearance potential). A quadrupole mass spectrometer (QMS) was used to detect the neutral oxygen atoms, but the ionizer was operated in the appearance potential (AP) mode to make it possible to distinguish the oxygen atoms from products formed by collision of the oxygen atoms with the walls. Loss of the reactive oxygen atoms was also minimized by enclosing the ESD chamber in fused silica. With a primary beam energy of 100 eV, the ESD cross section for oxygen atom desorption was found to be 7 × 10-19cm2 at 100 °C, and an ESD threshold was found to exist below 34 eV. Flash desorption of oxygen allowed estimation of the bulk diffusivity of oxygen through polycrystalline Ag. A value of 2.64 × 10-6cm2s-1 at 500 °C was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号