首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model for fluid–structure interactions is presented. Its purpose, within the context of 2D overexpanded engine nozzles, is to improve understanding of interactions between side‐loads and rigid body rotations, and more generally of the underlying physics between a shock in motion and nozzle movements. The model is based on three different solvers, for fluid, structure and mesh deformation respectively, which are linked to a coupling scheme in a parallel environment. In particular it is shown that the nozzle has a natural torsional frequency for which the measured side‐loads are the greatest. This phenomenon is associated with a transversal wave in the flow between the two internal walls of the nozzle. For free coupling cases, our calculations go some way to explain how the mechanical energy is dissipated with a transfer of energy to the shock that encounters the largest motions to dissipate it. It has also been observed that the compression shock may adopt a quasi‐steady state response with regard to nozzle rotations at low frequencies, whereas this will no longer be the case at higher frequencies, where a phase shift may occur between side‐loads and rotational position. This study is aimed at enhancing the only current aeroelastic stability model for overexpanded nozzles (AIAA, 29th Joint Propulsion Conference and Exhibit, Monterey, CA, 28–30 June 1993). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

3.
The problem of an axisymmetric gas flow in a supersonic nozzle and in the jet escaping from the nozzle to a quiescent gas is solved within the framework of Navier-Stokes equations. The calculated pressure distribution is compared with that measured in the jet by a Pitot tube. The influence of the jet pressure ratio, Reynolds number, and half-angle of the supersonic part of the nozzle on nozzle flow and jet flow parameters is studied. It is shown that the distributions of gas-dynamic parameters at the nozzle exit are nonuniform, which affects the jet flow. The flow pattern for an overexpanded jet shows that jet formation begins inside the nozzle because of boundary-layer displacement from the nozzle walls. This result cannot be obtained with the inviscid formulation of the problem.  相似文献   

4.
The dynamic stability of a thin plate in supersonic flow based on 2-dimensional linear theory leads to the study of a new problem in mathematical physics: complex eigenvalue prob-lem for a non-self-adjoint fourth-order integro-differential equation of Volterra’s type.Exact solutions of the aeroelastic system is obtained. In contrast to various approximate analyses, our critical curve agrees satisfactorily with experimental data, being free from divergence in the low supe’rsonic region. Moreover, we observe some notable physical behaviors: (1) mutual separation of flutter and vacuum frequency spectrums, (2) degeneracy of critical Mach number. The present method may be generalized in solving the supersonic flutter for 3-dimensional airfoil model as well as blade cascade in turbo-generator.  相似文献   

5.
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 31 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.  相似文献   

6.
超音速气流中受热壁板的稳定性分析   总被引:3,自引:0,他引:3  
夏巍  杨智春 《力学学报》2007,39(5):602-609
采用Galerkin方法建立二维壁板的非线性气动弹性运动方程,用一阶活塞理论模拟壁板 受到的气动力. 基于李雅普诺夫间接法分析了平壁板的稳定性,得到了壁板失稳的边界 曲线;采用牛顿迭代法分析了壁板的屈曲变形,进而分析了后屈曲状态下壁板的稳定性; 在时域中分析了后屈曲状态下壁板的颤振边界. 分析结果表明,为了保证计算精度, 在二维壁板的静态失稳及过屈曲变形分析中,至少要取二阶谐波模态;在平壁板的超音速颤 振(动态失稳)边界分析中至少应取四阶模态. 还对壁板的温升,壁板长厚比、壁板密 度和气流马赫数作了无量纲变参分析,研究了这些参数的变化对壁板稳定性的影响规律. 研 究中发现,当气流速压较低时壁板一般会稳定在低阶谐波模态的屈曲变形位置,但是如果系 统出现多个渐近稳定的不动点,即使作用在壁板上的气流速压很低,壁板也有可能在较低速 压下发生二次失稳型颤振.  相似文献   

7.
The Busemann-type supersonic biplane can effectively reduce the wave drag through shock interference effect between airfoils. However, considering the elastic property of the wing structure, the vibration of the wings can cause the shock oscillation between the biplane, which may result in relative aeroelastic problems of the wing. In this research, fluid–structure interaction characteristics of the Busemann-type supersonic biplane at its design condition have been studied. A theoretical two-dimensional structure model has been established to consider the main elastic characteristics of the wing structure. Coupled with unsteady Navier–Stokes equations, the fluid–structure dynamic system of the supersonic biplane is studied through the two-way computational fluid dynamics/computational structural dynamics (CFD/CSD) coupling method. The biplane system has been simulated at its design Mach number with different nondimensional velocities. Different initial disturbance has been applied to excite the system and the effects of the position of the mass center on the system’s aeroelastic stability is also discussed. The results reveal that the stability of the airfoil in supersonic biplane system is decreased compared with that of the airfoil isolated in supersonic flow and such stability reduction effect should be given due attention in practical design.  相似文献   

8.
The aim of this paper is to present and compare two different approaches for aeroelastic stability analysis of a flexible over-expanded rocket nozzle. The first approach is based on the aeroelastic stability models developed in a previous work, while the second uses the numerical fluid–structure coupling via the transpiration method. The aeroelastic frequencies of the nozzle obtained by various stability models are compared with those extracted from the numerical coupling by the method of transpiration. Both set of results show an overall good agreement.  相似文献   

9.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

10.
Abstract. Transdermal powdered drug delivery involves the propulsion of solid drug particles into the skin by means of high-speed gas-particle flow. The fluid dynamics of this technology have been investigated in devices consisting of a convergent-divergent nozzle located downstream of a bursting membrane, which serves both to initiate gas flow (functioning as the diaphragm of a shock tube) and to retain the drug particles before actuation. Pressure surveys of flow in devices with contoured nozzles of relatively low exit-to-throat area ratio and a conical nozzle of higher area ratio have indicated a starting process of approximately 200 s typical duration, followed by a quasi-steady supersonic flow. The velocity of drug particles exiting the contoured nozzles was measured at up to 1050 m/s, indicating that particle acceleration took place primarily in the quasi-steady flow. In the conical nozzle, which had larger exit area ratio, the quasi-steady nozzle flow was found to be overexpanded, resulting in a shock system within the nozzle. Particles were typically delivered by these nozzles at 400 m/s, suggesting that the starting process and the quasi-steady shock processed flow are both responsible for acceleration of the particle payload. The larger exit area of the conical nozzle tested enables drug delivery over a larger target disc, which may be advantageous. Received 12 March 2000 / Accepted 8 June 2000  相似文献   

11.
The flow in a planar overexpanded nozzle with a slope discontinuity is studied numerically by means of two- (2D) and three-dimensional (3D) Reynolds-averaged Navier–Stokes simulations and is compared to experimental results. The nozzle pressure ratios (NPR) vary from 1.6 to 10. A good agreement is found between experimental and numerical results and two configurations are observed: under a certain critical NPR, the flow is shown to be asymmetrical with respect to the nozzle axis, while it is perfectly symmetrical for higher NPRs. The value of the critical NPR is found to be very dependent on the turbulence model. Finally, an hysteresis phenomenon is evidenced since the NPR at which the change of flow configuration occurs is different whether the NPR is increasing or decreasing in the nozzle.  相似文献   

12.
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.  相似文献   

13.
A great number of experimental data indicating shock wave/boundary layer interactions in internal or external supersonic flows were reviewed to make clear the mechanism of the interaction and to decide the onset of shock-induced separation. The interesting conclusions were obtained for the considerably wide range of flow geometries that the onset of separation is independent of the flow geometries and the boundary layer Reynolds number. It is found that the pressure rise necessary to separate the boundary layer in supersonic external flows could be applied to such internal flows as overexpanded nozzles or diffusers. This is due to the fact that the separation phenomenon caused by shock wave/boundary layer interactions is processed through a supersonic deceleration. The shock-induced separation in almost all of interacting flow fields is governed by the concept of free interaction, and the onset of shock-induced separation is only a function of the Mach number just upstream of shock wave. However, physical scales of the produced separation are not independent of the downstream flow fields.  相似文献   

14.
TVD格式在超音速喷管三维粘性流动求解中的应用   总被引:2,自引:0,他引:2  
详细给出了任意三维曲线坐标系中Novier-Stokes方程的对流项TVD格式的构造过程,建立了数值求解三维粘性流动的计算方法,应用该方法对三维超音速喷管中有激波及无激波情况下的两种工况的层流流场进行了数值求解,并与实验做了对比。结果表明本文建立的计算方法具有较高的精度,同时也证明TVD格式具有分辩率高,稳定收敛等优点,为进一步开展叶栅流场及紊流的研究打下了基础。  相似文献   

15.
A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel flutter is developed in this paper. A well-validated full Navier–Stokes code is coupled with a finite-difference procedure for the von Karman plate equations. A subiteration strategy is employed to eliminate lagging errors between the fluid and structural solvers. This approach eliminates the need for the development of a specialized, tightly coupled algorithm for the fluid/structure interaction problem. The new computational scheme is applied to the solution of inviscid two-dimensional panel flutter problems for subsonic and supersonic Mach numbers. Supersonic results are shown to be consistent with the work of previous researchers. Multiple solutions at subsonic Mach numbers are discussed. Viscous effects are shown to raise the flutter dynamic pressure for the supersonic case. For the subsonic viscous case, a different type of flutter behavior occurs for the downward deflected solution with oscillations occurring about a mean deflected position of the panel. This flutter phenomenon results from a true fluid/structure interaction between the flexible panel and the viscous flow above the surface. Initial computations have also been performed for inviscid, 3-D panel flutter for both supersonic and subsonic Mach numbers.  相似文献   

16.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

17.
Screech frequency is predicted using three different approaches, which make use of different quantities measured from the same computed flow field. The three different approaches are based on shock cell spacing in the imperfectly expanded supersonic jet, the wavelength of standing wave formed at the edge of the shear layer due to interference between downstream propagating hydrodynamic instabilities and upstream propagating acoustic waves, and from a spectral analysis of near-field pressure fluctuations. The computed flowfield for underexpanded and overexpanded axisymmetric screeching jets are obtained by solving the unsteady Navier-Stokes equations using a higher order Weighted Essentially Non-Oscillatory (WENO) discretization along with a subgrid scale Large-Eddy Simulation (LES) model.   相似文献   

18.
伽辽金有限元素法对旋翼气弹稳定性的应用   总被引:1,自引:0,他引:1  
采用伽辽金加权余数有限元素法发展了一种悬停状态下无铰旋翼桨叶气弹稳定性的分析方法。分析模型包括预锥角、下垂角、预掠角、总距角、桨根预安装角、桨叶预扭角、变距轴偏置、根部外伸量和操纵线系刚度等结构参数,对无铰旋翼桨叶气弹稳定性研究有普遍适用意义。试验证明该理论可行并能用于研究无铰旋翼结构参数对桨叶气弹稳定性的影响,也能用于直升机旋翼的型号设计。  相似文献   

19.
Transverse secondary gas injection into the supersonic flow of an axisymmetric convergent–divergent nozzle is investigated to describe the effects of the fluidic thrust vectoring within the framework of a small satellite launcher. Cold-flow dry-air experiments are performed in a supersonic wind tunnel using two identical supersonic conical nozzles with the different transverse injection port positions. The complex three-dimensional flow field generated by the supersonic cross-flows in these test nozzles was examined. Valuable experimental data were confronted and compared with the results obtained from the numerical simulations. Different nozzle models are numerically simulated under experimental conditions and then further investigated to determine which parameters significantly affect thrust vectoring. Effects which characterize the nozzle and thrust vectoring performances are established. The results indicate that with moderate secondary to primary mass flow rate ratios, ranging around 5 %, it is possible to achieve pertinent vector side forces. It is also revealed that injector positioning and geometry have a strong effect on the shock vector control system and nozzle performances.  相似文献   

20.
The influence of geometric and gasdynamic parameters on the flow structure and parameters of selfsustained oscillations in supersonic overexpanded jets interacting with a normally located plane finite obstacle is studied experimentally and theoretically. It is found that the geometric Mach number and the halfangle of nozzle expansion exert a significant effect on the interaction process. A comparison of experimental and numerical data allows one to find a possible reason for the emergence of selfsustained oscillations in overexpanded impact jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号