首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to monitor changes in the ionization of monolayers of 11-mercaptoundecanoic acid. When using an anionic redox probe, Fe(CN)6(-4), the charge-transfer resistance of the 11-mercaptoundecanoic acid monolayer-modified interface increases in a sigmoidal fashion as the solution is made basic. The opposite effect is observed when using a cationic redox probe. The inflection points of these two titration curves, however, differ when using the different redox probes. This result is taken as being characteristic of the influence that applied potential has on the ionization of the monolayer. The role of substrate potential on the ionization of the monolayer is further investigated by SECM. The SECM measurement monitors the concentration of Ru(NH3)6(+3) as the potential of the substrate is varied about the potential of zero charge. For monolayers of 11-mercaptoundecanoic acid in solutions buffered near the pKa of the terminal carboxylic acid, potential excursions positive of the PZC cause an increase in the concentration of Ru(NH3)6(+3) local to the interface, and potential excursions negative of the PZC cause a decrease in the local concentration of Ru(NH3)6(+3). Similar experiments conducted with an interface modified with 11-undecanethiol had no impact on the local concentration of Ru(NH3)6(+3). These results are interpreted in terms of the influence that applied potential has on the pH of the solution local to the interface and the impact that this has on the ionization of the monolayer.  相似文献   

2.
Combined atomic force microscopy–scanning electrochemical microscopy (AFM–SECM) is for the first time used to generate single corrosion pits on passivating iron surfaces in the micrometer range. The AFM–SECM probe locally generates nitric acid during the oxidation of nitrite ions with the release of protons at selected sites on the surface of the otherwise passive metal. High confinement of passive film breakdown is achieved from the combination of a small probe size and the inhibiting properties of non-reacted nitrite ions on the surrounding passivated surface. Simultaneous visualization of pit nucleation and propagation can be obtained in the same solution without changing the probe by AFM.  相似文献   

3.
An optimized immobilization procedure based on the electroreduction of aryldiazonium salt followed by covalent attachment of a cross-linked hydrogel was used to graft glucose oxidase on a carbon surface. Scanning electrochemical microscopy (SECM) and cyclic voltammetry were used to follow the construction steps of the modified electrode. By adjusting the compactness of the layer through the electrografting reaction, the penetration of the mediator through the layer can be controlled to allow the monitoring of the enzymatic activity by both cyclic voltammetry and SECM in feedback mode. The enzymatic activity of the film is finally characterized by SECM.  相似文献   

4.
Pt–Ag nanoparticle co‐deposits with different Pt–Ag ratios were prepared on a glassy carbon (GC) surface by pulsed electrodeposition and investigated for their catalytic activity in electrocatalytic oxygen reduction by using cyclic voltammetry (CV), rotating disc electrode (RDE) and scanning electrochemical microscopy (SECM) in 0.1 M phosphate buffer (pH 7.0). The atomic composition of the Pt–Ag co‐deposits was studied by means of energy‐dispersive X‐ray analysis (EDAX). In combination with X‐ray diffraction (XRD), the presence of partly alloyed Pt and Ag on the GC surface was confirmed. Scanning electron microscopy (SEM) images indicate that the prepared Pt–Ag catalyst particles are homogenously dispersed over the GC surface. Their size and morphology depend on their composition. The electrocatalytic activity of Pt–Ag deposits with high Pt content was the highest, exceeding even that of electrodeposited Pt as evaluated by quantitative RDE analysis. The redox competition mode of scanning electrochemical microscopy (RC‐SECM) was successfully used to visualize the local catalytic activity of the deposited Pt–Ag particles. Semi‐quantitative assessment of the SECM results confirmed the same order of activity of the different catalysts as the RDE investigations.  相似文献   

5.
Scanning electrochemical microscopy (SECM) was used to characterize enzyme-modified glass-gold specimens. The exposed gold surface was functionalized with an aminothiol and reacted with carbodiimide-activated glucose oxidase. The specimen surface was examined with SECM, using a 25 μm platinum electrode. Images were acquired showing the topography, electric conductivity, and enzymatic activity of the composite surface. It was found that the hydroxy-groups of the glass surface are as likely to bind to the activated enzyme as the amino-groups on the gold surface.  相似文献   

6.
Roberts WS  Davis F  Collyer SD  Higson SP 《The Analyst》2011,136(24):5287-5293
Scanning electrochemical microscopy (SECM) has been used to image and study the catalytic activity of horseradish peroxidase (HRP) immobilised in a patterned fashion onto glass slides. Microarrays of HRP islands could be deposited on amino-modified glass slides using glutaraldehyde crosslinking combined with the SECM being used as a micro-deposition device. The enzymatic activity of the immobilised enzyme on the surface was in the presence of its substrate observed to give rise to substantial positive feedback between the slide and the SECM microelectrode tip. Conversely when either blank slides - or slides coated with HRP which had been subsequently thermally denatured were utilised, these showed negative feedback effects. Various conditions such as enzyme concentration, incubation time and substrate concentration were systematically varied to optimise sensitivity. Regular arrays of HRP could be assembled and when imaged, displayed lower limits of detection of 1.2 × 10(-12) mol ml(-1) of benzoquinone.  相似文献   

7.
The first use of fluorescence confocal laser scanning microscopy (CLSM) to image three-dimensional pH gradients at electrode surfaces is described, using the reduction of benzoquinone (BQ) to hydroquinone in aqueous solution as an example. The associated local pH changes accompanying the process have been imaged using a trace amount of fluorescein, which has a pH-dependent fluorescent signal. Images recorded in x–y–z space, allow pH profiles to be obtained as a function of applied electrode potential. Experimentally determined profiles measured when BQ is reduced at a diffusion-limited rate are shown to be in good agreement with predictions from numerical simulation. Future applications of CLSM for pH imaging at electrode surfaces and its use in scanning electrochemical microscopy (SECM) are highlighted briefly.  相似文献   

8.
AFM-SECM measurements using alternating current mode SECM (AC–SECM) were performed at an AFM tip with an integrated recessed ring microelectrode. Measurements were carried out in a three-electrode arrangement at 14.92 kHz and 110 mVpp in 1 mM KCl solution. Combined AFM–AC–SECM enables the detection of electrochemical surface properties with high lateral resolution without addition of a redox mediator, thereby providing images on topographical changes along with chemical information. For demonstrating the capabilities of this method, simultaneously recorded data on the topography and the surface conductivity of gold/glass structures and of microelectrode arrays are discussed.  相似文献   

9.
We examined the physical properties of the surrounding yeast cell walls by using atomic force microscopy (AFM). The yeast cells were prepared on a cleaned glass substrate for confocal microscopy (CM) observation and were mechanically trapped into a porous membrane for AFM measurement. The confocal image of the yeast cells was measured in air, meanwhile the AFM topography images of the cells were measured in both deionized (DI) water (pH = 6.9) and phosphate‐buffered saline (PBS) solution (pH = 7.4). No significant differences between the AFM topography images of the yeast cells measured in DI water and in PBS solution could be inferred. In order to get the quantitative information on the sample elasticity, the force curves between an AFM tip and the yeast cell have been measured. These curves were measured in both DI water and in PBS solution on the same yeast cell using the same AFM cantilever to get the reliable result. The contact region of the force curve in approach mode was then converted into force versus indentation curve, which would be fitted with Hertz–Sneddon model for the calculation of the elasticity. Analysis of the curves indicates that there is a difference of the Young's modulus values of the yeast cell in various environments. These data show that the salt buffer solution increases the rigidity of the biological system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
利用电化学湿法印章技术在氧化铟锡(ITO)导电玻璃上制备AuPd合金和Au的双组分阵列图案. 采用具有微浮雕图案的琼脂糖印章存储足够多的溶液,并通过控制电沉积的时间来控制图案厚度. 应用场发射扫描电子显微镜(FE-SEM),X射线能谱分析(EDX)和原子力显微镜(AFM)分别对ITO表面上的AuPd合金和Au的形貌和组分进行表征,并通过循环伏安(CV)技术和扫描电化学显微镜(SECM)研究比较了Au和AuPd合金的催化活性. 利用扫描电化学显微镜(SECM)的针尖产生-基底收集(TG-SC)模式和氧化还原竞争(RC)模式,发现Au电极对二茂铁甲醇氧化物(FcMeOH+)电催化还原能力高于AuPd合金电极,而在AuPd合金上催化还原H2O2的能力显著高于Au.  相似文献   

11.
The enzymatic activity of diaphorase (Dp) immobilized on a solid substrate was characterized using a scanning electrochemical microscope (SECM) with shear force feedback to control the substrate-probe distance. The shear force between the substrate and the probe was monitored with a tuning fork-type quartz crystal and used as the feedback control to set the microelectrode probe close to the substrate surface. The sensitivity and the contrast of the SECM image were improved in the constant distance mode (distance, 50 nm) with the shear force feedback compared to the image in the constant height mode without the feedback. By using this system, the SECM and topographic images of the immobilized diaphorase were simultaneously measured. The microelectrode tip used in this study was ground aslant like a syringe needle in order to obtain the shaper topographic images. This shape was also effective for avoiding the interference during the diffusion of the enzyme substrates.  相似文献   

12.
A rapid, simple and reproducible two-step method for constructing cholesterol biosensors by covalently bonding cholesterol oxidase (ChOx) to a 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP)-modified gold electrode is described. Exhaustive characterizations of both the immobilization process and the morphological properties of the resulting ChOx monolayer were performed via a quartz crystal microbalance (QCM) and atomic force microscopy (AFM) operated under liquid conditions, respectively. In addition, scanning electrochemical microscopy (SECM) measurements were performed in order to check that the immobilized enzyme retains its catalytic activity. The replacement of the natural electron acceptor (O2) in the enzymatic reaction with an artificial mediator, hydroxymethylferrocene (HMF), was also studied. Finally, cholesterol was amperometrically determined by measuring the hydrogen peroxide produced during the enzymatic reaction at +0.5 V. The optimized cholesterol biosensor exhibited a sensitivity of 54 nA mM−1 and a detection limit of 22 μM.  相似文献   

13.
In this paper, we describe a novel method for measuring the forward heterogeneous electron-transfer rate constant (kf) through the thiol monolayer of gold monolayer protected clusters (MPCs) in solution using scanning electrochemical microscopy (SECM). Applying the equations for mixed mass-transfer and electron-transfer processes, we develop a new formula using only the diffusion coefficient and the tip radius and use it as part of a new method for evaluating SECM approach curves. This method is applied to determine the electron-transfer rates from a series of SECM approach curves for monodisperse hexanethiol MPCs and for polydisperse hexanethiol, octanethiol, decanethiol, dodecanethiol, and 2-phenyethylthiol gold MPCs. Our results show that as the alkanethiol length increases the rate of electron transfer decreases in a manner consistent with the previously proposed tunneling mechanism for the electron transfer in MPCs. However, the effective tunneling coefficient, Beta, is found to be only 0.41 A-1 for alkanethiol passivated MPCs compared to typical values of 1.1 A-1 for alkanethiols as self-assembled monolayers on two-dimensional gold substrates. Similar SECM approach curve results for Pt and Au MPCs indicate that the electron-transfer rate is dependent mostly on the composition of the thiol layer and not on differences in the core metal.  相似文献   

14.
A Prussian Blue (PB) film modified disk ultramicroelectrode (UME) was fabricated by electrochemical deposition technique on a Pt-disk UME. The electrocatalytical reductions of hydrogen peroxide derived from glucose oxidase (GOD) on this modified UME were investigated. The enzymatic biochemical reactivity was imaged by scanning electrochemical microscopy (SECM) utilizing the PB film modified UME. It is evident that sensitivity and spatial resolution for hydrogen peroxide measurement were improved obviously. SECM images obtained clearly revealed the concentration profile of the reaction products around the enzymes. The PB film modified microelectrode is in the nature of simple preparation, high catalytic activity on hydrogen peroxide and substrate selectivity for SECM etc.  相似文献   

15.
The enzyme p-diphenol:dioxygen oxidoreductase (laccase, EC 1.10.3.2) was isolated from Cerrena unicolor fungus and embedded in a sol-gel film obtained by acidic condensation of TMOS. The gel was cast to thin films on glass. The laccase-containing silicate films were inspected by confocal laser scanning microscopy (CLSM), scanning force microscopy (SFM) and scanning electrochemical microscopy (SECM). CLSM images in the reflection mode showed aggregates within the silicate films. SECM images in the substrate-generation/tip-collection mode using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as electron donor for laccase showed that the position of aggregates coincides with increased enzymatic activity within the silicate film. The flux from individual aggregates was detected. SECM images in the redox competition mode confirmed the assignment and could exclude that topographic features observed by CLSM and SFM could be the reason for the image contrast. SFM images showed that the aggregates partially dissolve during prolonged exposure to aqueous buffer. The experimental setup allowed following one individual aggregate over time with all three microscopic techniques which enabled the collection of complementing information on morphology and catalytic activity as well as their development over time.  相似文献   

16.
Summary: Microcontact printing was used to deposit stable, nanostructured, amphiphilic and crosslinkable patterns of poly(amidoamine organosilicon) (PAMAMOS)‐dimethoxymethylsilyl (DMOMS) dendrimer multilayers onto silicon wafers, glass, and polyelectrolyte multilayers. The effects of dendrimer ink concentration, contact time, and inking method, on the thickness, uniformity, and stability of the resulting patterns were studied using optical microscopy, fluorescence microscopy, atomic force microscopy (AFM), and contact‐angle analysis. Microarrayed dendrimer film thickness was found to be controllable by conditions used during spin self‐assembly.

Optical micrograph of the circular patterns, obtained from a 0.5% PAMAMOS dendrimer solution, on a glass substrate.  相似文献   


17.
Scanning electrochemical microscopy (SECM) and video microscopy have been used to examine the mediated electrodeposition of polypyrrole on AA2024-T3. Of particular interest is the role of surface heterogeneity (namely, copper-rich secondary phase particles) on electrodeposition mediated by 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron). SECM shows that polymer nucleation occurs exclusively on the aluminum matrix of the alloy. Video microscopy shows this to be true on a model alloy (a pure Al substrate with an embedded Cu wire) as well, and also suggests that polymer growth is directional toward the copper-rich sites in the absence of sulfate in the deposition solution. A model is presented in which polymer deposition on the copper-rich sites is inhibited either by CuSO4-induced passivation or by the loss of mediator due to Cu–Tiron complex formation.  相似文献   

18.
Scanning electrochemical microscopy (SECM) was used for imaging of n-hexadecanethiol-modified Au surfaces. In these studies, small defects were observed in the monolayer when a submicrometer electrode was used as an SECM tip, although a cyclic voltammogram of a Au disk electrode showed that the surface of the Au was completely covered with n-hexadecanethiol. The dependence of the SECM images on the potential of the Au electrode was also examined. A comparison of the current at the Au electrode and the tip current in the SECM images showed that direct electron transfer through the monolayer was dominant, rather than electron transfer at the defects. The size of the defects was estimated from the tip current to be 1-100 nm, under the assumption that the defects were small compared to the SECM probe.  相似文献   

19.
Scanning electrochemical microscopy (SECM) and scanning chemiluminescence microscopy (SCLM) were used for imaging an enzyme chip with spatially-addressed spots for glucose oxidase (GOD) and uricase microspots. For the SECM imaging, hydrogen peroxide generated from the GOD and/or uricase spots was directly oxidized at the tip microelectrode in a solution containing glucose and/or uric acid (electrochemical (EC) detection). For the SCLM imaging, a tapered glass capillary (i.d. of 1∼2 μm) filled with luminol and horseradish peroxidase (HRP) was used as the scanning probe for generating the chemiluminescence (CL). The inner solution was injected from the capillary tip at 78 pl s−1 while scanning above the enzyme-immobilized chip. The CL generated when the capillary tip was scanned above the enzyme spots was detected using a photon-counter (CL detection). Two-dimensional mapping of the oxidation current and photon-counting intensity against the tip position affords images of which their contrast reflects the activity of the immobilized GOD and uricase. For both the EC and CL detections, the signal responses were plotted as a function of the glucose and uric acid concentrations in solution. The sensitivities for the EC and CL detection were found to be comparable.  相似文献   

20.
Different pathways towards the generation and detection of a single metal nanoparticle (MNP) on a conductive carbon support for testing as an electrocatalyst are described. Various approaches were investigated including interparticle distance enhancement, electrochemical and mechanical tip-substrate MNP transfer onto macroscopic surfaces, scanning electrochemical microscopy (SECM)-controlled electrodeposition, and the use of selective binding monolayers on carbon fiber electrodes (CFEs) for solution-phase-selective adsorption. A novel SECM technique for electrodepositing MNPs on CFE tips immersed 100-200 nm below the electrolyte level was developed and used to generate single Pt and Ni nanoparticles. Following their generation, we demonstrate electrocatalytic detection of Fe3+ on individual Pt particles with the CFE in a Fe3+/H2SO4 solution. We also describe an approach of attaching MNPs to CFEs by controlling the composition of monolayers bonded to the CFE. By employing a monolayer with a low ratio of binding (e.g., 4-aminopyridine) to nonbinding molecules (e.g., aniline) and controlling the position of the CFE in a colloidal Pt solution with a SECM, we attached a single 15 nm radius Pt nanoparticle to the CFE. Such chemisorbed Pt particles exhibited a stronger adhesion on surface-modified CFEs and better mechanical stability during proton reduction than MNPs electrodeposited directly on the CFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号