首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vanadate–tellurate vitreous systems with composition (1 ? x)TeO2·xV2O5 where x = 0.3 and 0.4 have been prepared by the conventional melt-quench method. The structural aspects have been investigated using FTIR spectroscopy and the density functional theory (DFT) calculations.The present study provides the interesting information concerning devitrification behavior of the vanadate–tellurate vitreous system which occur Te2V2O9 crystalline phase. The structure of the heat-treated glasses was found to consist mainly of rings containing [TeO3], [TeO4], [VO4] and some [VO5] structural units.  相似文献   

2.
A lithium-rich nickel-manganese oxide compound Lix(Ni0.25Mn0.75)Oy (x > 1) was synthesized from layered Na0.9Li0.3Ni0.25Mn0.75Oδ precursor using a lithium ion-exchange reaction. The electrochemical behavior of the material as a cathode for lithium batteries, and a preliminary discussion of its structure are reported. The product Li1.32Na0.02Ni0.25Mn0.75Oy (IE-LNMO) shows broad X-ray diffraction peaks, but possesses a high intensity sharp (003) layering peak and multiple peaks with intensity in the 20–23° 2θ region which suggest Ni–Mn ordering in the transition metal layer (TM). Li/IE-LNMO cells demonstrate very stable reversible capacities of 220 mAh/g @ 15 mA/g and possess extremely high power of 150 mAh/g @ 1500 mA/g (15C). The Li/IE-LNMO cell dQ/dV plot exhibits three reversible electrochemical processes due to Ni/Mn redox behavior in a layered component, and Mn redox exchange in a spinel component. No alteration in the dQ/dV curves and no detectable change in the voltage profiles over 40 cycles were observed, thus indicating a stable structure for lithium insertion/extraction. This new material is attractive for demanding Li-ion battery applications.  相似文献   

3.
This work demonstrates the feasibility of measuring electrochemical reaction rates on common flow-through porous electrodes by traditional Tafel analysis. A customized microfluidic channel electrode was designed and demonstrated by measuring the intrinsic kinetics of the V2 +/V3 + and VO2 +/VO2+ redox reactions in carbon paper electrodes under forced electrolyte flow. The exchange current density of the V2 +/V3 + reaction was found to be nearly two orders of magnitude slower than the VO2 +/VO2+ reaction, indicating that this may be the limiting reaction in vanadium redox flow batteries. The forced convection in this technique is found to generate reproducible exchange current densities which are consistently higher than for conventional electrochemical methods due to improved mass transport.  相似文献   

4.
Ambient pressure CaV2O4 and high-pressure NaV2O4 crystallize in the CaFe2O4 structure type containing double chains of edge-sharing VO6 octahedra. Recent measurements on NaV2O4 reveal low-dimensional metallicity and evidence of half-metallic ferromagnetism. In contrast, CaV2O4 is an antiferromagnetic insulator. To explore the evolution of these ground-state behaviors, we have prepared a series of Ca-doped NaV2O4 compounds with the formula Na1?xCaxV2O4 (x = 0–1) using high-pressure synthesis. Samples at the Na end (x = 0–0.07) show a broad antiferromagnetic transition in the 120–160 K range in accordance with earlier reports. Transport measurements show an insulator–metal transition at x  0.2. Samples with higher Ca concentrations (x = 0.4–0.7) exhibit a metal–insulator transition around 150 K. The results for the Na1?xCaxV2O4 solid solution is discussed in comparison to existing studies at the Ca- and Na-rich ends.  相似文献   

5.
Glasses with compositions xNb2O5·(30 ? x)M2O·69B2O3 (where M = Li, Na, K; x = 0, 4, 8 mol%) doped with 1 mol% V2O5 have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400–4000 cm?1. The changes caused by the addition of Nb2O5 on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO2+ ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V4+ ions which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V4+O6 complex decreases with increasing concentration of Nb2O5. The 3dxy orbit contracts with increase in Nb2O5:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported.  相似文献   

6.
Ultrathin free-standing electrospun carbon nanofiber web(ECNFW) used for the electrodes of the vanadium flow battery(VFB) has been fabricated by the electrospinning technique followed by the carbonization process in this study to reduce the ohmic polarization of the VFB. The microstructure, surface chemistry and electrochemical performance of ECNFW carbonized at various temperatures from 800 to 1400 °C have been investigated. The results show that ECNFW carbonized at 1100 °C exhibits the highest electrocatalytic activity toward the V~(2+)/V~(3+)redox reaction, and its electrocatalytic activity decreases along with the increase of carbonization temperature due to the drooping of the surface functional groups.While for the VO~(2+)/VO_2~+redox couple, the electrocatalytic activity of ECNFW carbonized above 1100 °C barely changes as the carbonization temperature rises. It indicates that the surface functional groups could function as the reaction sites for the V~(2+)/V~(3+)redox couple, but have not any catalytic effect for the VO~(2+)/VO_2~+redox couple. And the single cell test result suggests that ECNFW carbonized at 1100 °C is a promising material as the VFB electrode and the VFB with ECNFW electrodes obtains a super low internal resistance of 250 mΩ cm~2.  相似文献   

7.
We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source−drain current (ID) at a constant source−drain voltage (VD) and the gate voltage (VG) was measured. ID increased above −VG = 1.1 V and showed a maximum at −VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (−VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = −2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V−1 s−1 at x = 110 mol%/repeating unit (−VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10−4 cm2 V−1 s−1 at x = 10 mol%.  相似文献   

8.
Vanadium pentoxide (V2O5) was electrodeposited on a poly(p-phenylene terephtalamide) (PPTA)-film coated electrode. The cyclic voltammogram of the film had a reversible redox current peak. The film was dark green in the reduced state and yellow in the oxidized state. To obtain new colour, gold was further electrodeposited on the film. Not only the redox current peak but also a new redox current shoulder appeared in the cyclic voltammogram of the obtained film, and it exhibited a multicoloured electrochromism: blackish green  dark green  green   bright red. The red colour in the oxidized state was first obtained for the V2O5 film. The new redox current shoulder and the colour were probably due to AuyV2O5 partially formed during electrodeposition of the gold. The redox of the AuyV2O5 was accompanied by egress and ingress of Li+ ions and the new colour change.  相似文献   

9.
A highly-efficient all-vanadium photoelectrochemical storage cell has been demonstrated in this work. This storage cell takes advantage of fast electrochemical kinetics of vanadium redox couples of VO2+/VO2 + and V3 +/V2 +, and appears as a promising alternative to photoproduction of hydrogen from water. Continuous photocharging for 25 h revealed a VO2 + conversion rate of 0.0042 μmol/h and Faradaic efficiency of 95% without external voltage bias. The incident photon-to-current efficiency (IPCE) at 350 nm light was calculated to be ~ 12%.  相似文献   

10.
The whole range of solid solutions Li(Li(1−x)/3CoxMn(2−2x)/3)O2 (0  x  1) was firstly synthesized by an aqueous solution method using poly-vinyl alcohol as a synthetic agent to investigate their structure and electrochemical properties. X-ray diffraction results indicated that the synthesized solid solutions showed a single phase without any detectable impurity phase and have a hexagonal structure with some additional peaks caused by monoclinic distortion, especially in the solid solutions with a low Co amount. In the electrochemical examination, the solid solutions in the range between 0.2  x  0.9 showed higher discharge capacity and better cyclability than LiCoO2 (x = 1) on cycling between 2.0 and 4.6 V with 100 mA g−1 at 25 °C. For example, Li(Li0.2Co0.4Mn0.4)O2 (x = 0.4) exhibited a high discharge capacity of 180 mA h g−1 at the 50th cycle. By synthesizing the solid solution between Li2MnO3 and LiCoO2, the electrochemical properties of the end members were improved.  相似文献   

11.
The effect of Li doping in spinel Li4+xTi5−xO12 (0  x  0.2) materials on the structural and electrochemical properties were investigated. The ratio of the capacity in the voltage plateau (1.5 V) to the overall discharge capacity for Li4.1Ti4.9O12 (x = 0.1) and Li4.2Ti4.8O12 (x = 0.2) were higher than that of Li4Ti5O12 especially at high current rates due to their enhanced lithium-ion and electronic conductivity by the substitution of Ti atoms by Li atoms. With the increasing of Li doping amount, lithium-ion and electronic conductivity of Li4+xTi5−xO12 increased, however its cycling stability was depressed when the Li doping was of x = 0.2. The Li doping of x = 0.1, the appropriate Li doping amount, showed improved rate capability and better high rate performance comparing to undoped Li4+xTi5−xO12 (x = 0).  相似文献   

12.
Hydrous vanadium oxide (denoted as VOx·yH2O) deposited at 0.4 V shows promising capacitive behavior in aqueous media containing concentrated Li ions. VOx·yH2O annealed in air at 300 °C for 1 h shows highly reversible Li-ion intercalation/de-intercalation behavior with specific capacitance reaching ca. 737 and 606 F g? 1 at 25 and 500 mV s? 1 in 12 M LiCl between ?0.2 and 0.8 V. In 14 M LiCl, retention of specific capacitance is about 95% when the scan rate is increased from 25 to 500 mV s? 1. This work is the first report showing the ultrahigh rate of Li-ion intercalation/de-intercalation in VOx·yH2O. A so-called Li-ion supercapacitor of the asymmetric type consisting of a VOx.yH2O cathode and a WO3.zH2O anode is proposed here.  相似文献   

13.
Nanocrystallites of vanadium pentoxide were synthesized by the hydrothermal treatment of electrospun composite nanofibers. Each crystallite of dimension ?100 nm was found to be a single crystal of δ-phase HxV4O10 · nH2O. The crystallinity and morphology was maintained on heating to 500 °C when V2O5 was formed. The electrochemical capacity of the nano-V2O5 in a lithium cell was found to be above 350 mAh/g. The columbic efficiency is close to 100% when small amounts of lithium bis(oxalato)borate is added to the LiPF6 electrolyte.  相似文献   

14.
The V–Zr–Ge system was studied for two isothermal sections at 900 and 1200 °C. Three ternary compounds VZrGe (tI12, I4/mmm, CeScSi-type), VxZr5?xGe4 (oP36, Pnma, Sm5Ge4-type) and V4+xZr2?xGe5 (oI44, Ibam, Si5V6-type) were structurally characterized. Optical microscopy and powder X-ray diffraction (XRD) were used for initial sample characterization and electron probe microanalysis (EPMA) of the annealed samples was used to determine the exact phase compositions. The variation of the cell parameters of the various ternary solid solutions with the composition was determined. The three ternary phases were structurally characterized by means of single crystal and powder XRD. While VZrGe is almost a line compound, VxZr5?xGe4 (0.2  x  3.0) and V4+xZr2?xGe5 (0.06  x  1.2) are forming extended solid solution ranges stabilized by differential fractional site occupancy of V and Zr on the metal sites.  相似文献   

15.
5–10 μm long, typically 200–300 nm wide, and several nanometers thick LixV2O5  0.8) nanobelts with the δ-type crystal structure were synthesized by a hydrothermal treatment of Li+-exchanged V2O5 gel. When dried at 200 °C under vacuum prior to electrochemical testing, the as-prepared nanobelts underwent the well-known δ  ε  γ-phase transition giving a mixture of ε and γ phases as a nanocomposite electrode material. Such a simple preparation procedure guarantees a yield of material with drastically enhanced initial discharge specific capacity of 490 mAh/g and great cyclability. The enhanced electrochemical performance is attributed to the complex of experimental procedures including post-synthesis treatment of the single-crystalline LixV2O5 nanobelts.  相似文献   

16.
《Vibrational Spectroscopy》2007,43(1):140-151
The effect of hydration on the molecular structure of silica-supported vanadium oxide catalysts with loadings of 1–16 wt.% V has been systematically investigated by infrared, Raman, UV–vis and EXAFS spectroscopy. IR and Raman spectra recorded during hydration revealed the formation of V–OH groups, characterized by a band at 3660 cm−1. Hydroxylation was found to start instantaneously upon exposure to traces of water, reflecting a very high sensitivity of the supported vanadium oxide catalysts for H2O. Further hydration resulted in the appearance of a V–O–V vibration band located around 700 cm−1 pointing to the formation of di- or polymeric species. EXAFS analysis at 77 K indicated structural changes as the oxygen coordination changed from four to five. Moreover, a V⋯V contribution was detected for the hydrated species. The IR, Raman and UV–vis data suggested a pyramidal anchoring of the dehydrated VOx species, whereas, the EXAFS data pointed to the presence of single V–O–Si bonded VOx species. This difference is attributed to water condensation effects at 77 K during EXAFS acquisition, resulting in a partial re-hydroxylation of the dehydrated samples, as confirmed by complementary IR and Raman analysis. Combining the results of this study with data from our previous studies [D.E. Keller, F.M.F. de Groot, D.C. Koningsberger, B.M. Weckhuysen, J. Phys. Chem. B 109 (2005) 10223; D.E. Keller, D.C. Koningsberger, B.M. Weckhuysen, J. Phys. Chem. B 110 (2006) 14313] as well as literature led to a reaction scheme in which a monomeric VOx species anchored by three Si–O–V bonds to the silica support (pyramidal-type structure) is transformed into a monomeric VOx species anchored by one Si–O–V bond (umbrella-type structure) by partial hydration of the catalyst material. This results in the formation of both V–O–H and Si–O–H bonds. At higher water pressures, larger vanadium oxide clusters are formed due to full hydration of the catalyst surface and a de-attachment of the vanadium oxide from the support surface. The results of this study provide evidence, that an umbrella-type structure (i.e., Si–O–VO(OH)2) could be present under catalytic conditions where H2O is a reaction product (e.g., partial oxidation of methanol to formaldehyde and oxidative dehydrogenation of alkanes). In other words, both the pyramidal ((Si–O)3–VO) and the umbrella (Si–O–VO(OH)2) model can exist at a support surface, their relative ratio depending on the hydration degree of the catalyst material. This study also illustrates that a corroborative characterization requires the use of multiple spectroscopic techniques applied at the same samples under almost identical measuring conditions.  相似文献   

17.
Hydrothermal carbonization of sucrose was used to controllably synthesize Montroseite VOOH and Paramontroseite VO2 nanoparticles carbonaceous core-shell microspheres. After calcinations, V2O3-VO2-C core-shell microspheres were obtained. When they were used as cathode materials in lithium-ion battery (LIB), it was found that Montroseite VOOH carbonaceous core-shell microspheres exhibited higher discharge capacity than Paramontroseite VO2 counterpart, while the content of V2O3 had some large effects on the electrochemical properties of V2O3-VO2C core-shell microspheres.  相似文献   

18.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

19.
A new ferrocenecarboxylic acid–C60 composite (Fc–C60) has been synthesized by controlled potential electrolysis. A composite modified glassy carbon electrode has been prepared based on its good electrochemical activity. The modified electrode in 0.1 M NaClO4 solution shows a reversible oxidation wave at E1/2 = 0.32 V (vs. SCE) attributed to the oxidation of the ferrocene entity and a quasi-reversible reduction wave of C60 entity at E1/2 = ?0.54 V (vs. SCE). Electrocatalytic studies show that Fc–C60 at the modified electrode can mediate the reduction of hydrogen peroxide (H2O2), and a broad linear range from 1.2 μM to 21.9 mM for H2O2 were obtained with a determination limit of 2.5 × 10?7 M by amperometry.  相似文献   

20.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号